回归分析特征选择(包括Stepwise算法) python 实现

Posted 蘭亭客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了回归分析特征选择(包括Stepwise算法) python 实现相关的知识,希望对你有一定的参考价值。

# -*- coding: utf-8 -*-
"""
Created on Sat Aug 18 16:23:17 2018

@author: acadsoc
"""
import scipy
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.cross_validation import cross_val_predict, cross_val_score, train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, r2_score
from sklearn.grid_search import RandomizedSearchCV
from sklearn.linear_model import  Lasso, LassoCV, ElasticNet
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from statsmodels.formula import api as smf
import sys
import os

‘‘‘多元线性回归特征选择类‘‘‘      
class featureSelection():
    def __init__(self, random_state=None):
        self.random_state = random_state # 随机种子
        
    ‘‘‘ElasticNet筛选重要变量‘‘‘
    def elasticNetRandomSearch(self, df, cv=10, n_iter=1000, n_jobs=-1, normalize=True):
        # ElasticNet随机搜索,搜索最佳模型
        if normalize: # 如果需要标准化数据
            df_std = StandardScaler().fit_transform(df)
            df = pd.DataFrame(df_std, columns=df.columns, index=df.index)  
            
        X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
        eln = ElasticNet()
        param_rs = {‘alpha‘ : scipy.stats.expon(loc=0, scale=1),  # 模型需搜索的参数
                    ‘l1_ratio‘ : scipy.stats.uniform(loc=0, scale=1)}
        
        elasticnet_rs = RandomizedSearchCV(eln,  # 建立随机搜索
                                param_distributions=param_rs,
                                scoring=‘r2‘,
                                cv=cv,
                                n_iter=n_iter,
                                n_jobs=n_jobs)
        elasticnet_rs.fit(X, y)  # 模型训练        
        # 用最佳模型进行变量筛选变量、系数  
        self.elasticnet_rs_best = ElasticNet(alpha=elasticnet_rs.best_params_[‘alpha‘],
                                          l1_ratio = elasticnet_rs.best_params_[‘l1_ratio‘])
        self.elasticnet_rs_best.fit(X, y)
        coef = pd.DataFrame(self.elasticnet_rs_best.coef_, index=df.columns[1:],
                            columns=[‘系数‘]).sort_values(by=‘系数‘, axis=0, ascending=False)
        self.elasticnet_rs_coef_selected_ = coef[coef > 0].dropna(axis=1).columns
        self.elasticnet_rs_R2_ = 1 - np.mean((y.values.reshape(-1,1) -
                                              self.elasticnet_rs_best.predict(X).reshape(-1,1)) ** 2) / np.var(y)
        return self
    
    ‘‘‘绘制ElasticNet正则化效果图‘‘‘
    def elasticNetFeatureSelectPlot(self, df, l1_ratio=.7, normalize=True,
                                    plot_width=12, plot_height=5, xlim_exp=[-5, 1], ylim=[-1, 1]):        
        if normalize: # 如果需要标准化数据
            df_std = StandardScaler().fit_transform(df)
            df = pd.DataFrame(df_std, columns=df.columns, index=df.index)  
        
        X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        
        plt.figure(figsize=(plot_width, plot_height))
        ax = plt.subplot(111)
        colors = [‘blue‘, ‘green‘, ‘red‘, ‘cyan‘, ‘magenta‘, ‘yellow‘, ‘black‘, ‘pink‘, ‘lightgreen‘,
                  ‘lightblue‘, ‘gray‘, ‘indigo‘, ‘orange‘, ‘seagreen‘, ‘gold‘, ‘purple‘]
        weights, params = [], []
        for alpha in np.arange(-5, 1, 0.1, dtype=float):
            eln = ElasticNet(alpha=10 ** alpha, l1_ratio=l1_ratio, random_state=123)
            eln.fit(X, y)
            weights.append(eln.coef_)
            params.append(10 ** alpha)
        
        weights = np.array(weights)
        for column, color in zip(range(weights.shape[1]), colors):
            plt.plot(params, weights[:, column], label=df.columns[column + 1], color=color)
        
        plt.axhline(0, color=‘black‘, linestyle=‘--‘, linewidth=3)
        plt.xlim(10 ** xlim_exp[0], 10 ** xlim_exp[1])
        plt.ylim(ylim)
        plt.title(‘弹性网络变量选择图‘, fontproperties=zh_font)
        plt.ylabel(‘权重系数‘, fontproperties=zh_font)
        plt.xlabel(‘$alpha$‘)
        plt.xscale(‘log‘)
        plt.xticks(10 ** np.arange(xlim_exp[0], xlim_exp[1], dtype=float),
                   10 ** np.arange(xlim_exp[0], xlim_exp[1], dtype=float))
        plt.legend(loc=‘best‘, prop=zh_font)
        ax.legend(prop=zh_font)
        #plt.grid()
        plt.show()
        return self
    
    ‘‘‘ElasticNet回归分析‘‘‘
    def elasticNet(self, df, feat_selected=None, alpha=1, l1_ratio=.7, fit_intercept=True, normalize=False):
        if normalize: # 如果需要标准化数据
            df_std = StandardScaler().fit_transform(df)
            df = pd.DataFrame(df_std, columns=df.columns, index=df.index)  
        
        if feat_selected is not None:  # 如果输入了选择好的变量
            X = df[feat_selected]
        else:            
            X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        
        self.eln = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept)
        self.eln.fit(X, y)  # 模型训练
        
        # 变量、系数,R2
        self.elasticnet_coef_ = pd.DataFrame(self.eln.coef_, index = X.columns,
                            columns=[‘系数‘]).sort_values(by=‘系数‘, ascending=False)
        self.elasticnet_coef_selected_ = self.elasticnet_coef_[self.elasticnet_coef_ > 0].dropna(axis=0).index
        self.elasticnet_R2_ = 1 - np.mean((y.values.reshape(-1,1) -
                                           self.eln.predict(X).reshape(-1,1)) ** 2) / np.var(y)
        return self
        
    ‘‘‘画特征条形图(纵向排列)‘‘‘
    def featureBarhPlot(self, df_coef, figsize=(12, 6)):    
        # 输入的特征数据df_coef需是数据框
        coef = df_coef.sort_values(by=df_coef.columns[0], axis=0, ascending=True)
        plt.figure(figsize=figsize)
        y_label = np.arange(len(coef))
        plt.barh(y_label, coef.iloc[:, 0])
        plt.yticks(y_label, coef.index, fontproperties=zh_font)
        
        for i in np.arange(len(coef)):
            if coef.iloc[i, 0] >= 0:
                dist = 0.003 * coef.iloc[:, 0].max()
            else:
                dist = -0.02 * coef.iloc[:, 0].max()
            plt.text(coef.iloc[i, 0] + dist, i - 0.2, ‘%.3f‘ % coef.iloc[i, 0], fontproperties=zh_font)
            
        # plt.grid()
        plt.ylabel(‘特征‘, fontproperties=zh_font)
        plt.xlabel(‘特征系数‘, fontproperties=zh_font)
        plt.title(‘特征系数条形图‘, fontproperties=zh_font)
        plt.legend(prop=zh_font)
        plt.show()
         
    ‘‘‘RandomForest选择特征(累积重要性大于等于0.85)‘‘‘
    def randomForestRandomSearch(self, df, cv=10, n_iter=100, n_jobs=-1, normalize=True):
        # ElasticNet随机搜索,搜索最佳模型
        if normalize: # 如果需要标准化数据
            df_std = StandardScaler().fit_transform(df)
            df = pd.DataFrame(df_std, columns=df.columns, index=df.index)  
            
        X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
        rf = RandomForestRegressor()
        param_rs = {‘n_estimators‘ : np.arange(1, 500),  # 模型需搜索的参数
                    ‘max_features‘ : np.arange(1, X.shape[1] + 1)}
        
        rf_rs = RandomizedSearchCV(rf,  # 建立随机搜索
                                param_distributions=param_rs,
                                scoring=‘r2‘,
                                cv=cv,
                                n_iter=n_iter,
                                n_jobs=n_jobs)
        rf_rs.fit(X, y)  # 模型训练        
        # 用最佳模型进行变量筛选变量、系数  
        self.rf_rs_best = RandomForestRegressor(n_estimators=rf_rs.best_params_[‘n_estimators‘],
                                          max_features=rf_rs.best_params_[‘max_features‘])
        self.rf_rs_best.fit(X, y)
        self.rf_rs_feat_impo_ = pd.DataFrame(self.rf_rs_best.feature_importances_, index = df.columns[1:],
                            columns=[‘系数‘]).sort_values(by=‘系数‘, axis=0, ascending=False)
        
        n = 0
        for i, v in enumerate(self.rf_rs_feat_impo_.values.cumsum()):
            if v >= 0.85:
                n = i
                break
                
        self.rf_rs_feat_selected_ = self.rf_rs_feat_impo_.index[:n+1]           
        self.rf_rs_R2_ = 1 - np.mean((y.values.reshape(-1,1) -
                                              self.rf_rs_best.predict(X).reshape(-1,1)) ** 2) / np.var(y)
        return self
    
    ‘‘‘Randomforest回归分析‘‘‘
    def randomForest(self, df, feat_selected=None, impo_cum_threshold=.85,
                     n_estimators=100, max_features=‘auto‘, normalize=False):
        if normalize: # 如果需要标准化数据
            df_std = StandardScaler().fit_transform(df)
            df = pd.DataFrame(df_std, columns=df.columns, index=df.index)  
        
        if feat_selected is not None:  # 如果输入了选择好的变量
            X = df[feat_selected]
        else:            
            X = df.iloc[:, 1:]
        y = df.iloc[:, 0]
        
        self.rf = RandomForestRegressor(n_estimators=n_estimators, max_features=max_features)
        self.rf.fit(X, y)  # 模型训练
        
        # 变量、系数,R2
        self.rf_feat_impo_ = pd.DataFrame(self.rf.feature_importances_, index = X.columns,
                            columns=[‘系数‘]).sort_values(by=‘系数‘, ascending=False)
        
        n = 0
        for i, v in enumerate(self.rf_feat_impo_.values.cumsum()):
            if v >= impo_cum_threshold:
                n = i
                break
                
        self.rf_feat_selected_ = self.rf_feat_impo_.index[:n+1]      
        self.rf_R2_ = 1 - np.mean((y.values.reshape(-1,1) - self.rf.predict(X).reshape(-1,1)) ** 2) / np.var(y)
        return self
    
    ‘‘‘逐步回归‘‘‘
    def stepwise(self, df, response, intercept=True, criterion=‘bic‘, f_pvalue_enter=.05, p_value_enter=.05,
                 direction=‘backward‘, show_step=True, val_enter=None, val_remove=None, **kw):
        criterion_list = [‘bic‘, ‘aic‘, ‘ssr‘, ‘rsquared‘, ‘rsquared_adj‘]
        if criterion not in criterion_list:
            raise IOError(‘请输入正确的criterion, 必须是以下内容之一:‘, ‘ ‘, criterion_list)
            
        direction_list = [‘backward‘, ‘forward‘, ‘both‘]
        if direction not in direction_list:
            raise IOError(‘请输入正确的direction, 必须是以下内容之一:‘, ‘ ‘, direction_list)
            
        # 默认p_enter参数    
        p_enter = {‘bic‘:0.0, ‘aic‘:0.0, ‘ssr‘:0.05, ‘rsquared‘:0.05, ‘rsquared_adj‘:-0.05}
        if val_enter:  # 如果函数中对p_remove相应key传参,则变更该参数
            p_enter[criterion] = val_enter
            
        # 默认p_remove参数    
        p_remove = {‘bic‘:0.01, ‘aic‘:0.01, ‘ssr‘:0.1, ‘rsquared‘:0.05, ‘rsquared_adj‘:-0.05}
        if val_remove:  # 如果函数中对p_remove相应key传参,则变更该参数
            p_remove[criterion] = val_remove
                
        ###### forward ######
        if direction == ‘forward‘:
            remaining = list(df.columns)  # 自变量集合
            remaining.remove(response)
            selected = []  # 初始化选入模型的变量列表
            # 初始化当前评分,最优新评分
            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, remaining[0])
            else:
                formula = "{} ~ {} - 1".format(response, remaining[0])
                    
            result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合            
            current_score = eval(‘result.‘ + criterion)
            best_new_score = eval(‘result.‘ + criterion)
                
            if show_step:    
                print(‘ stepwise starting: ‘)
            # 当变量未剔除完,并且当前评分更新时进行循环
            while remaining and (current_score == best_new_score):
                scores_with_candidates = []  # 初始化变量以及其评分列表
                for candidate in remaining:  # 在未剔除的变量中每次选择一个变量进入模型,如此循环
                    if intercept: # 是否有截距
                        formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected + [candidate]))
                    else:
                        formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected + [candidate]))
                        
                    result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合
                    fvalue = result.fvalue
                    f_pvalue = result.f_pvalue                    
                    score = eval(‘result.‘ + criterion)                    
                    scores_with_candidates.append((score, candidate, fvalue, f_pvalue)) # 记录此次循环的变量、评分列表
                    
                if criterion == ‘ssr‘:  # 这几个指标取最小值进行优化
                    scores_with_candidates.sort(reverse=True)  # 对评分列表进行降序排序
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()  # 提取最小分数及其对应变量
                    if ((current_score - best_new_score) > p_enter[criterion]) and (best_new_f_pvalue < f_pvalue_enter):  # 如果当前评分大于最新评分
                        remaining.remove(best_candidate)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.append(best_candidate)  # 将最新最优分对应的变量放入已选变量列表
                        current_score = best_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Adding %s, SSR = %.3f, Fstat = %.3f, FpValue = %.3e‘ %
                                  (best_candidate, best_new_score, best_new_fvalue, best_new_f_pvalue))
                elif criterion in [‘bic‘, ‘aic‘]:  # 这几个指标取最小值进行优化
                    scores_with_candidates.sort(reverse=True)  # 对评分列表进行降序排序
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()  # 提取最小分数及其对应变量
                    if (current_score - best_new_score) > p_enter[criterion]:  # 如果当前评分大于最新评分
                        remaining.remove(best_candidate)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.append(best_candidate)  # 将最新最优分对应的变量放入已选变量列表
                        current_score = best_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程  
                            print(‘Adding %s, %s = %.3f‘ % (best_candidate, criterion, best_new_score))                        
                else:
                    scores_with_candidates.sort()
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()
                    if (best_new_score - current_score) > p_enter[criterion]:
                        remaining.remove(best_candidate)
                        selected.append(best_candidate)
                        current_score = best_new_score
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Adding %s, %s = %.3f‘ % (best_candidate, criterion, best_new_score))                    

            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected))
            else:
                formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected))
                
            self.stepwise_model = smf.ols(formula, df).fit()  # 最优模型拟合
            
            if show_step:  # 是否显示逐步回归过程                
                print(‘ Linear regression model:‘, ‘   ‘, self.stepwise_model.model.formula)
                print(‘ ‘, self.stepwise_model.summary())
        
        ###### backward ######
        if direction == ‘backward‘:
            remaining, selected = set(df.columns), set(df.columns)  # 自变量集合
            remaining.remove(response)
            selected.remove(response)  # 初始化选入模型的变量列表
             # 初始化当前评分,最优新评分
            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected))
            else:
                formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected))
                    
            result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合            
            current_score = eval(‘result.‘ + criterion)
            worst_new_score = eval(‘result.‘ + criterion)
                
            if show_step:    
                print(‘ stepwise starting: ‘)
            # 当变量未剔除完,并且当前评分更新时进行循环
            while remaining and (current_score == worst_new_score):
                scores_with_eliminations = []  # 初始化变量以及其评分列表
                for elimination in remaining:  # 在未剔除的变量中每次选择一个变量进入模型,如此循环
                    if intercept: # 是否有截距
                        formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected - set(elimination)))
                    else:
                        formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected - set(elimination)))
                        
                    result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合
                    fvalue = result.fvalue
                    f_pvalue = result.f_pvalue                    
                    score = eval(‘result.‘ + criterion)                    
                    scores_with_eliminations.append((score, elimination, fvalue, f_pvalue)) # 记录此次循环的变量、评分列表
                    
                if criterion == ‘ssr‘:  # 这几个指标取最小值进行优化
                    scores_with_eliminations.sort(reverse=False)  # 对评分列表进行降序排序
                    worst_new_score, worst_elimination, worst_new_fvalue, worst_new_f_pvalue = scores_with_eliminations.pop()  # 提取最小分数及其对应变量
                    if ((worst_new_score - current_score) < p_remove[criterion]) and (worst_new_f_pvalue < f_pvalue_enter):  # 如果当前评分大于最新评分
                        remaining.remove(worst_elimination)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.remove(worst_elimination)  # 从已选变量列表中剔除最新最优分对应的变量
                        current_score = worst_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Removing %s, SSR = %.3f, Fstat = %.3f, FpValue = %.3e‘ %
                                  (worst_elimination, worst_new_score, worst_new_fvalue, worst_new_f_pvalue))
                elif criterion in [‘bic‘, ‘aic‘]:  # 这几个指标取最小值进行优化
                    scores_with_eliminations.sort(reverse=False)  # 对评分列表进行降序排序
                    worst_new_score, worst_elimination, worst_new_fvalue, worst_new_f_pvalue = scores_with_eliminations.pop()  # 提取最小分数及其对应变量
                    if (worst_new_score - current_score) < p_remove[criterion]:  # 如果评分变动不显著
                        remaining.remove(worst_elimination)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.remove(worst_elimination)  # 从已选变量列表中剔除最新最优分对应的变量
                        current_score = worst_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程  
                            print(‘Removing %s, %s = %.3f‘ % (worst_elimination, criterion, worst_new_score))                        
                else:
                    scores_with_eliminations.sort(reverse=True)
                    worst_new_score, worst_elimination, worst_new_fvalue, worst_new_f_pvalue = scores_with_eliminations.pop()
                    if (current_score - worst_new_score) < p_remove[criterion]:
                        remaining.remove(worst_elimination)
                        selected.remove(worst_elimination)
                        current_score = worst_new_score
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Removing %s, %s = %.3f‘ % (worst_elimination, criterion, worst_new_score))                    

            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected))
            else:
                formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected))
                
            self.stepwise_model = smf.ols(formula, df).fit()  # 最优模型拟合
            
            if show_step:  # 是否显示逐步回归过程                
                print(‘ Linear regression model:‘, ‘   ‘, self.stepwise_model.model.formula)
                print(‘ ‘, self.stepwise_model.summary())
        
        ###### both ######
        if direction == ‘both‘:
            remaining = list(df.columns)  # 自变量集合
            remaining.remove(response)
            selected = []  # 初始化选入模型的变量列表
            # 初始化当前评分,最优新评分
            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, remaining[0])
            else:
                formula = "{} ~ {} - 1".format(response, remaining[0])
                    
            result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合            
            current_score = eval(‘result.‘ + criterion)
            best_new_score = eval(‘result.‘ + criterion)
                
            if show_step:    
                print(‘ stepwise starting: ‘)
            # 当变量未剔除完,并且当前评分更新时进行循环
            iter_times = 0
            while remaining and (current_score == best_new_score):               
                scores_with_candidates = []  # 初始化变量以及其评分列表
                for candidate in remaining:  # 在未剔除的变量中每次选择一个变量进入模型,如此循环
                    if intercept: # 是否有截距
                        formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected + [candidate]))
                    else:
                        formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected + [candidate]))
                        
                    result = smf.ols(formula, df).fit() # 最小二乘法回归模型拟合
                    fvalue = result.fvalue
                    f_pvalue = result.f_pvalue                    
                    score = eval(‘result.‘ + criterion)                    
                    scores_with_candidates.append((score, candidate, fvalue, f_pvalue)) # 记录此次循环的变量、评分列表
                    
                if criterion == ‘ssr‘:  # 这几个指标取最小值进行优化
                    scores_with_candidates.sort(reverse=True)  # 对评分列表进行降序排序
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()  # 提取最小分数及其对应变量
                    if ((current_score - best_new_score) > p_enter[criterion]) and (best_new_f_pvalue < f_pvalue_enter):  # 如果当前评分大于最新评分
                        remaining.remove(best_candidate)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.append(best_candidate)  # 将最新最优分对应的变量放入已选变量列表
                        current_score = best_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Adding %s, SSR = %.3f, Fstat = %.3f, FpValue = %.3e‘ %
                                  (best_candidate, best_new_score, best_new_fvalue, best_new_f_pvalue))
                elif criterion in [‘bic‘, ‘aic‘]:  # 这几个指标取最小值进行优化
                    scores_with_candidates.sort(reverse=True)  # 对评分列表进行降序排序
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()  # 提取最小分数及其对应变量
                    if (current_score - best_new_score) > p_enter[criterion]:  # 如果当前评分大于最新评分
                        remaining.remove(best_candidate)  # 从剩余未评分变量中剔除最新最优分对应的变量
                        selected.append(best_candidate)  # 将最新最优分对应的变量放入已选变量列表
                        current_score = best_new_score  # 更新当前评分
                        if show_step:  # 是否显示逐步回归过程  
                            print(‘Adding %s, %s = %.3f‘ % (best_candidate, criterion, best_new_score))                        
                else:
                    scores_with_candidates.sort()
                    best_new_score, best_candidate, best_new_fvalue, best_new_f_pvalue = scores_with_candidates.pop()
                    if (best_new_score - current_score) > p_enter[criterion]:
                        remaining.remove(best_candidate)
                        selected.append(best_candidate)
                        current_score = best_new_score
                        if show_step:  # 是否显示逐步回归过程                             
                            print(‘Adding %s, %s = %.3f‘ % (best_candidate, criterion, best_new_score))
                            
                if intercept: # 是否有截距
                    formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected))
                else:
                    formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected))
                    
                result = smf.ols(formula, df).fit()  # 最优模型拟合
                if iter_times >= 1: # 当第二次循环时判断变量的pvalue是否达标
                    if result.pvalues.max() > p_value_enter:
                        var_removed = result.pvalues[result.pvalues == result.pvalues.max()].index[0]
                        p_value_removed = result.pvalues[result.pvalues == result.pvalues.max()].values[0]
                        selected.remove(result.pvalues[result.pvalues == result.pvalues.max()].index[0])
                        if show_step:  # 是否显示逐步回归过程                
                            print(‘Removing %s, Pvalue = %.3f‘ % (var_removed, p_value_removed))                        
                iter_times += 1
                
            if intercept: # 是否有截距
                formula = "{} ~ {} + 1".format(response, ‘ + ‘.join(selected))
            else:
                formula = "{} ~ {} - 1".format(response, ‘ + ‘.join(selected))
                
            self.stepwise_model = smf.ols(formula, df).fit()  # 最优模型拟合
            
            if show_step:  # 是否显示逐步回归过程                
                print(‘ Linear regression model:‘, ‘   ‘, self.stepwise_model.model.formula)
                print(‘ ‘, self.stepwise_model.summary())                
        # 最终模型选择的变量
        if intercept:
            self.stepwise_feat_selected = list(self.stepwise_model.params.index[1:])
        else:
            self.stepwise_feat_selected = list(self.stepwise_model.params.index)
        return self    




















































































































































































































































































































































































































































































以上是关于回归分析特征选择(包括Stepwise算法) python 实现的主要内容,如果未能解决你的问题,请参考以下文章

R语言基于逐步回归(Stepwise regression)进行特征筛选(feature selection)

SAS学习89(方差分析anova过程相关分析和回归分析corr过程reg过程多元线性回归stepwise)

SAS学习89(方差分析anova过程相关分析和回归分析corr过程reg过程多元线性回归stepwise)

R构建逐步回归模型(Stepwise Regression)

贪心算法的地理加权回归特征变量选择方法

回归与分类的特征选择