网络基础 CAS协议学习总结

Posted 授客的博客

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了网络基础 CAS协议学习总结相关的知识,希望对你有一定的参考价值。

架构介绍

系统组件

CAS服务器和客户端构成了CAS系统体系结构的两个物理组件,它们通过各种协议进行通信。

CAS服务器

CAS服务器是基于Spring Framework构建的Java servlet,其主要职责是通过签发和验证ticket来验证用户并授予对启用CAS认证了的服务(通常称为CAS客户端)的访问权限。当用户成功登录(即认证通过)时,CAS服务器会向用户签发TGT(Ticket Granting Ticket),并创建SSO会话。应用户的请求,通过使用TGT作为令牌的浏览器重定向,向启用CAS认证的服务签发ST(Service Ticket)。ST随后通过调用接口在CAS服务器上进行验证。这些交互作用在CAS协议文档中有详细描述。

CAS客户端

术语“CAS客户端”在其常见用法中有两个不同的含义。CAS客户端是任何启用CAS认证的应用,可通过支持的协议与CAS服务器通信。CAS客户端也是一个软件包,可以与各种软件平台和应用程序集成,以便通过某些身份验证协议(例如CAS、SAML、OAuth)与CAS服务器通信。CAS客户端支持多种软件平台和并且已经开发了很多产品。

CAS协议

CAS协议是一种简单而强大的基于票证(ticket)的协议。完整的协议规范可以查看这里

它涉及一个或多个客户端和一个服务器。客户端嵌入在CAS化的(CASified)应用程序中(称为“CAS服务”),而CAS服务器则是一个独立的组件:

  • CAS服务器负责对用户进行身份验证并授予对应用程序的访问权限

  • CAS客户端保护CAS应用程序并从CAS服务器检索授权用户的身份。

关键概念:

  • TGT (Ticket Granting Ticket), 存储在 TGC cookie中,为SSO(Single Sign On, 单点登录,)会话的Key,代表某个用户的某个SSO会话。
  • TGC(Ticket Granted Cookie),以TGT为值的Cookie
  • ST (Service Ticket,服务票证), 作为GET URL请求参数传输,表示由CAS服务器授予给特定用户对CAS服务的访问权限。

单点登录:指在多个应用系统中,只需登录一次,即可在多个应用系统之间共享登录。

协议版本

3.0.3

当前的CAS协议版本是“3.0.3”。协议规范说明可参考连接 https://apereo.github.io/cas/6.6.x/protocol/CAS-Protocol-Specification.html,由Apereo CAS服务实现,作为官方参考实现。在CAS协议“2.0”之上增加了最常见的增强功能。在其他功能中,版本“2.0”和“3.0”之间最引人注目的更新是能够通过新的/p3/serviceValidate端点返回身份验证/用户属性。

2.0

协议规范说明,可参考连接 https://apereo.github.io/cas/6.6.x/protocol/CAS-Protocol-V2-Specification.html

Web流程图

过程详述

  1. 用户通过浏览器访问被保护的应用(暂且称之为 应用服务)

    GET https://app.example.com/
    
  2. 应用服务上的CAS客户端检测到用户需要进行身份认证时,携应用返回302响应状态码,指示浏览器重定向到CAS服务器。

    说明:CAS客户端包含一个AuthenticationFilter过滤器,该过滤器可以拦截所有的请求,用于判断用户是否需要通过Cas Server进行身份认证,如果需要则将跳转到CAS服务器登录页面,否则则请求会继续往下执行

    关键响应头

    location: https://cas.example.com/cas/login?service=https%3A%2F%2Fapp.example.com%2F
    

    其中,service指向用户原访问地址(注意,是经过URL编码后的地址)

  3. 浏览器根据302响应状态码及响应头location指示,自动重定向访问CAS服务器。

    GET https://cas.example.com/cas/login?service=https%3A%2F%2Fapp.example.com%2F
    
  4. CAS服务器未检测到SSO会话,向用户返回CAS登录表单页面。

  5. 用户手动输入正确用户名,密码等认证信息后,提交表单

    POST https://cas.example.com/cas/login?service=https%3A%2F%2Fapp.example.com%2F
    
  6. CAS服务器接收到用户名和密码后,对用户进行验证(可使用CAS服务器默认的验证,也可以自定义实现验证方法),如果验证通过,则创建SSO会话,签发一个ST(作为location请求中URL参数传输) , 返回302响应状态码,及location请求头,提示浏览器重定向访问应用服务。

    关键响应头

    Location: https://app.example.com/?ticket=ST-12345678
    Set-Cookie: CASTGC=TGT-2345678
    

    说明:Set-Cookie响应头,提示浏览器存储Cookie--将TGT(Ticket Granted Ticket)存储为CASTGC Cookie值,这是单点登录的关键步骤,因为这样以后,当前浏览器中访问其它需要CAS认证的应用服务时,将自动携带CASTGC Cookie重定向访问CAS服务器网站,而访问CAS服务器时,CAS服务会通过该Cookie值,即TGT来查找对应的SSO会话,如果存在会话,则表示已登录CAS服务器,签发ST, 返回302响应状态码,提示浏览器重定向访问应用服务,否则未登录,返回CAS服务器登录页。

    注意,CASTGC也可能被命名为其它类似名称,比如 CASTGC-D,如果有对CAS服务器进行相关改造的话。

  7. 浏览器根据302响应状态码及响应头location指示,自动重定向访问 应用服务。

    GET https://app.example.com/?ticket=ST-12345678
    
  8. 应用服务收到请求后,请求CAS服务器服务验证接口,验证ST

    注意:每个ST只能用一次,且存在有效期,这就是为啥需要二次访问CAS服务器进行验证的原因。

    GET https://cas.example.com/serviceValidate?service=https%3A%2F%2Fapp.example.com%2F&ticket=ST-12345678
    
  9. CAS服务器对ST进行验证,生成XML响应报文,返回给应用服务,该XML响应报文包含是包含是否验证成功、被认证的用户信息、可选属性。

  10. 应用服务收到响应报文后,可根据CAS服务器验证结果,为当前用户生成会话,返回302响应状态码,Set-Cookielocation响应头,提示浏览器存储会话Cookie,并再次通过重定向访问应用服务。

    关键响应头:

    Set-Cookie: JSESSIONID=ABC1234567
    Location: https://app.example.com/
    

    注意:上述Location中的URL,没有携带ticket参数,避免长时间将ST暴露在浏览器地址栏中

  11. 用户浏览器收到响应后,根据提示重定向访问应用服务

    GET https://app.example.com/
    Cookie: JSESSIONID=ABC1234567
    
  12. 应用服务收到上述请求后,验证会话Cookie,如果存在对应会话,则表示用户已登录,返回用户请求的资源

  13. 当用户第二次访问相同应用服务时,应用服务会再次验证会话Cookie,如果存在对应会话,则表示用户已登录,返回用户请求的资源

    GET https://app.example.com/resource
    Cookie: JSESSIONID=ABC1234567
    

  14. 用户通过浏览器访问被保护的另一个应用(暂且称之为 应用服务2)

    GET https://app2.example.com/
    
  15. 应用服务2上的CAS客户端检测到用户需要进行身份认证时,携应用返回302响应状态码,指示浏览器重定向到CAS服务器。

    关键响应头

    location: https://cas.example.com/cas/login?service=https%3A%2F%2Fapp2.example.com%2F
    
  16. 浏览器根据302响应状态码及响应头location指示,携CASTGC Cookie自动重定向访问CAS服务器。

    GET https://cas.example.com/cas/login?service=https%3A%2F%2Fapp2.example.com%2F
    Cookie: CASTGC=TGT-2345678
    
  17. CAS服务器根据CASTGC检测是否已存在SSO会话,发现已存在对应会话(即无需CAS登录),签发一个ST, 返回302响应状态码,及location请求头,提示浏览器重定向访问应用服务。

    关键响应头

    Location: https://app2.example.com/?ticket=ST-345678
    
  18. 浏览器根据302响应状态码及响应头location指示,自动重定向访问 应用服务2。

    GET https://app2.example.com/?ticket=ST-345678
    

  1. 应用服务2收到请求后,请求CAS服务器服务验证接口,验证ST

    GET https://cas.example.com/serviceValidate?service=https%3A%2F%2Fapp2.example.com%2F&ticket=ST-345678
    
  2. CAS服务器对ST进行验证,生成XML响应报文,返回给应用服务,该XML响应报文包含是包含是否验证成功、被认证的用户信息、可选属性。

  3. 应用服务2收到响应报文后,可根据CAS服务器验证结果,为当前用户生成会话,返回302响应状态码,Set-Cookielocation响应头,提示浏览器存储会话Cookie,并再次通过重定向访问应用服务2。

    关键响应头:

    Set-Cookie: MOD_AUTH_CAS_S=XYZ1234567
    Location: https://app.example.com/
    

    注意:上述Location中的URL,没有携带ticket参数,避免长时间将ST暴露在浏览器地址栏中

  4. 用户浏览器收到响应后,根据提示重定向访问应用服务2

    GET https://app2.example.com/
    Cookie: MOD_AUTH_CAS_S=XYZ1234567
    
  5. 应用服务2收到上述请求后,验证会话Cookie,如果存在对应会话,则表示用户已登录,返回用户请求的资源

CAS单点登出(SLO,Single Logout )

单点登出(注销登录),意味着除了让CAS服务器自身SSO会话失效,还将使客户端应用会话失效,如果CAS客户端支持注销协议的话。

只要TGT过期,就会启动注销协议。

使用警告!

默认情况下,启用单点登出。

当CAS会话结束时,它会通知每个应用服务SSO会话不再有效,依赖方需要使自己的会话无效。记住,提交给每个CAS保护应用服务的回调仅是一个通知,没有别的了。应用程序需要拦截该通知,并通过特定端点手动或更常见的是通过支持SLO的CAS客户端类库正确销毁用户身份验证会话。

还要注意,由于SLO是一个全局事件,因此默认情况下,将联系具有CAS身份验证记录的所有应用程序,如果这些应用程序彼此不同,则可能会对用户体验造成负面影响。例如,如果用户已登录门户应用程序和电子邮件应用程序,则通过SLO注销其中一个应用程序也会破坏另一个的用户会话,如果应用程序没有仔细管理其会话和用户活动,这可能意味着数据丢失。

流程如下:

通过访问CAS服务器logout API(如下),可以注销CAS登录。

https://cas.example.com/cas/logout

如果希望注销登录后,跳转到应用服务登录页,需要添加service参数,并设置跳转目标URL,如下:

https://wcas.sit.sf-express.com/cas/logout?service=https%3A%2F%2Fcas.example.com%2Fcas%2Flogin%3F

参考连接

https://apereo.github.io/cas/6.6.x/planning/Architecture.html

https://apereo.github.io/cas/6.6.x/protocol/CAS-Protocol.html

https://apereo.github.io/cas/6.6.x/protocol/CAS-Protocol-Specification.html

https://cloud.tencent.com/developer/article/2141095

https://apereo.github.io/cas/6.6.x/installation/Logout-Single-Signout.html

TCP/IP协议学习总结

TCP/IP协议学习总结

网络基础知识

下面总结了深入理解TCP/IP所必备的基础知识,其中包括计算机与网络发展的历史及其标准化过程、OSI参考模型、网络概念的本质、网络构建的设备等。

连接人与人的计算机网络

计算机网络最初的目的是连接一个个独立的计算机,使它们组成一个更强有力的计算环境。简而言之,就是为了提高生产力。从批处理时代到计算机网络时代,毋庸置疑,都体现了这一目的。然而,现在却似乎有了微妙的变化。

现代计算机网络的首要目的之一,可以说是连接人与人。置身于世界各地的人们可以通过网络建立联系、相互沟通、交流思想。然而这些在计算机网络初期是无法实现的。这种连接人与人的计算机网络,已经逐渐给人们的日常生活、学校教育、科学研究、公司发展带来了巨大的变革。

协议

随处可见的协议

在计算机网络与信息通信领域里,人们经常提及“协议”一词。互联网中常用的具有代表性的协议有IP、TCP、HTTP等。而LAN(局域网)中常用的协议有IPX/SPX(Novell公司开发的NetWare系统的协议。) 等。

“计算机网络体系结构”将这些网络协议进行了系统的归纳。TCP/IP就是IP、TCP、HTTP等协议的集合。现在,很多设备都支持TCP/IP。除此之外,还有很多其他类型的网络体系结构。例如,Novell公司的IPX/SPX、苹果公司的AppleTalk(仅限苹果公司计算机使用)、IBM公司开发的用于构建大规模网络的SNA(System Network Architecture) 以及前DEC公司(1998年被收购。) 开发的DECnet等。

各种网络体系结构及其协议:

协议的必要性

简单来说,协议就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU以及不同的操作系统组成的计算机之间,只要遵循相同的协议就能够实现通信。反之,如果所使用的协议不同,就无法实现通信。这就好比两个人使用不同国家的语言说话,怎么也无法相互理解。协议可以分为很多种,每一种协议都明确地界定了它的行为规范。两台计算机之间必须能够支持相同的协议,并遵循相同协议进行处理,这样才能实现相互通信。注:协议就是双方之间制定的规范约定

计算机中的协议

人类具有掌握知识的能力,对所学知识也有一定的应用能力和理解能力。因此在某种程度上,人与人的沟通并不受限于太多规则。即使有任何规则之类的东西,人们也可以通过自己的应变能力很自然地去适应规则。

然而这一切在计算机通信当中,显然无从实现。因为计算机的智能水平还没有达到人类的高度。其实,计算机从物理连接层面到应用程序的软件层面,各个组件都必须严格遵循着事先达成的约定才能实现真正的通信。此外,每个计算机还必须装有实现通信最基本功能的程序。如果将前面例子中提到的A、B与C替换到计算机中,就不难理解为什么需要明确定义协议,为什么要遵循既定的协议来设计软件和制造计算机硬件了。

人们平常说话时根本不需要特别注意就能顺其自然地吐字、发音。并且在很多场合,人类能够根据对方的语义、声音或表情,合理地调整自己的表达方式和所要传达的内容,从而避免给对方造成误解。甚至有时在谈话过程中如果不小心漏掉几个词,也能从谈话的语境和上下文中猜出对方所要表达的大体意思,不至于影响自己的理解。然而计算机做不到这一点。因此,在设计计算机程序与硬件时,要充分考虑通信过程中可能会遇到的各种异常以及对异常的处理。在实际遇到问题时,正在通信的计算机之间也必须具备相应的设备和程序以应对异常。

在计算机通信中,事先达成一个详细的约定,并遵循这一约定进行处理尤为重要。这种约定其实就是“协议”。

分组交换协议

分组交换是指将大数据分割为一个个叫做包(Packet)的较小单位进行传输的方法。这里所说的包,如同我们平常在邮局里见到的邮包。分组交换就是将大数据分装为一个个这样的邮包交给对方。

分组通信:

当人们邮寄包裹时,通常会填写一个寄件单贴到包裹上再交给邮局。寄件单上一般会有寄件人和收件人的详细地址。类似地,计算机通信也会在每一个分组中附加上源主机地址和目标主机地址送给通信线路。这些发送端地址、接收端地址以及分组序号写入的部分称为“报文首部”。

一个较大的数据被分为多个分组时,为了标明是原始数据中的哪一部分,就有必要将分组的序号写入包中。接收端会根据这个序号,再将每个分组按照序号重新装配为原始数据。

通信协议中,通常会规定报文首部应该写入哪些信息、应该如何处理这些信息。相互通信的每一台计算机则根据协议构造报文首部、读取首部内容等。为了双方能正确通信,分组的发送方和接收方有必要对报文首部和内容保持一致的定义和解释。

协议分层与OSI参考模型

协议的分层

ISO在制定标准化OSI之前,对网络体系结构相关的问题进行了充分的讨论,最终提出了作为通信协议设计指标的OSI参考模型。这一模型将通信协议中必要的功能分成了7层。通过这些分层,使得那些比较复杂的网络协议更加简单化。

在这一模型中,每个分层都接收由它下一层所提供的特定服务,并且负责为自己的上一层提供特定的服务。上下层之间进行交互时所遵循的约定叫做“接口”。同一层之间的交互所遵循的约定叫做“协议”。

协议分层就如同计算机软件中的模块化开发。OSI参考模型的建议是比较理想化的。它希望实现从第一层到第七层的所有模块,并将它们组合起来实现网络通信。分层可以将每个分层独立使用,即使系统中某些分层发生变化,也不会波及整个系统。因此,可以构造一个扩展性和灵活性都较强的系统。此外,通过分层能够细分通信功能,更易于单独实现每个分层的协议,并界定各个分层的具体责任和义务。这些都属于分层的优点。

而分层的劣势,可能就在于过分模块化、使处理变得更加沉重以及每个模块都不得不实现相似的处理逻辑等问题。

协议的分层:

OSI参考模型

前面只是将协议简单地分为了两层进行了举例说明。然而,实际的分组通信协议会相当复杂。OSI参考模型将这样一个复杂的协议整理并分为了易于理解的7个分层。

OSI协议与OSI参考模型

OSI(参考模型)将通信功能划分为7个分层,称作OSI参考模型。OSI协议以OSI参考模型为基础界定了每个阶层的协议和每个阶层之间接口相关的标准。遵循OSI协议的产品叫OSI产品,而它们所遵循的通信则被称为OSI通信。

OSI参考模型中各个分层的作用

在此,以下图为例简单说明OSI参考模型中各个分层的主要作用:

  • 应用层

    为应用程序提供服务并规定应用程序中通信相关的细节。包括文件传输、电子邮件、远程登录(虚拟终端)等协议。例如HTTP

  • 表示层

    将应用处理的信息转换为适合网络传输的格式,或将来自下一层的数据转换为上层能够处理的格式。因此它主要负责数据格式的转换。

    具体来说,就是将设备固有的数据格式转换为网络标准传输格式。不同设备对同一比特流解释的结果可能会不同。因此,使它们保持一致是这一层的主要作用。例如 HTML、XML就是属于表示层。

  • 会话层

    负责建立和断开通信连接(数据流动的逻辑通路),以及数据的分割等数据传输相关的管理。例如 session+cookie 就是会话层。

  • 传输层

    起着可靠传输的作用。只在通信双方节点上进行处理,而无需在路由器上处理。例如 TCP、UDP。

  • 网络层

    将数据传输到目标地址。目标地址可以是多个网络通过路由器连接而成的某一个地址。因此这一层主要负责寻址和路由选择。

  • 数据链路层

    负责物理层面上互连的、节点之间的通信传输。例如与1个以太网相连的2个节点之间的通信。
    将0、1序列划分为具有意义的数据帧传送给对端(数据帧的生成与接收)。

  • 物理层

    负责0、1比特流(0、1序列)与电压的高低、光的闪灭之间的互换。

7层通信

在7层OSI模型中,如何模块化通信传输?

发送方从第7层、第6层到第1层由上至下按照顺序传输数据,而接收端则从第1层、第2层到第7层由下至上向每个上一级分层传输数据。每个分层上,在处理由上一层传过来的数据时可以附上当前分层的协议所必须的“首部”信息。然后接收端对收到的数据进行数据“首部”与“内容”的分离,再转发给上一分层,并最终将发送端的数据恢复为原状。

通信与7个分层:

  • 应用层

    应用层的工作如下图:

    注:简单来说 发送方从第7层开始从上到下发送信息,而接收方则是从第1层开始从下到上接收消息

    用户A在主机A上新建一封电子邮件,指定收件人为B,并输入邮件内容为“早上好”。

    收发邮件的这款软件从功能上可以分为两大类:一部分是与通信相关的,另一部分是与通信无关的。例如用户A从键盘输入“早上好”的这一部分就属于与通信无关的功能,而将“早上好”的内容发送给收件人B则是其与通信相关的功能。因此,此处的“输入电子邮件内容后发送给目标地址”也就相当于应用层。

    从用户输入完所要发送的内容并点击“发送”按钮的那一刻开始,就进入了应用层协议的处理。该协议会在所要传送数据的前端附加一个首部(标签)信息。该首部标明了邮件内容为“早上好”和收件人为“B”。这一附有首部信息的数据传送给主机B以后由该主机上的收发邮件软件通过“收信”功能获取内容。主机B上的应用收到由主机A发送过来的数据后,分析其数据首部与数据正文,并将邮件保存到硬盘或是其他非易失性存储器(数据不会因为断电而丢失的一种存储设备 [3] ) 以备进行相应的处理。如果主机B上收件人的邮箱空间已满无法接收新的邮件,则会返回一个错误给发送方。对这类异常的处理也正属于应用层需要解决的问题。

    主机A与主机B通过它们各自应用层之间的通信,最终实现邮件的存储。

  • 表示层
    表示层的工作如下图:

    表示层的“表示”有“表现”、“演示”的意思,因此更关注数据的具体表现形式(最有名的就是每款计算机对数据在内存中相异的分配方式。最典型的是大实体和小实体。) 。此外,所使用的应用软件本身的不同也会导致数据的表现形式截然不同。

    那么,电子邮件中如果遇到此类问题该如何解决呢?如果用户A与用户B所使用的邮件客户端软件完全一致,就能够顺利收取和阅读邮件,不会遇到类似的问题。但是这在现实生活当中是不大可能的。让所有用户千篇一律地使用同一款客户端软件对使用者来说也是极不方便的一件事情(现在,除了个人电脑,还有其他设备如智能手机也都能够连接到网络。如何让它们之间能够相互读取通信数据已变得越来越重要。) 。

    解决这类问题有以下几种方法。首先是利用表示层,将数据从“某个计算机特定的数据格式”转换为“网络通用的标准数据格式”后再发送出去。接收端主机收到数据以后将这些网络标准格式的数据恢复为“该计算机特定的数据格式”,然后再进行相应处理。

    在前面这个例子中,由于数据被转换为通用标准的格式后再进行处理,使得异构的机型之间也能保持数据的一致性。这也正是表示层的作用所在。即表示层是进行“统一的网络数据格式”与“某一台计算机或某一款软件特有的数据格式”之间相互转换的分层。

    表示层与表示层之间为了识别编码格式也会附加首部信息,从而将实际传输的数据转交给下一层去处理。

  • 会话层
    会话层工作如下图:

    会话层也像应用层或表示层那样,在其收到的数据前端附加首部或标签信息后再转发给下一层。而这些首部或标签中记录着数据传送顺序的信息。

传输层以下的处理

在应用层写入的数据会经由表示层格式化编码、再由会话层标记发送顺序后才被发送出去的大致过程。然而,会话层只对何时建立连接、何时发送数据等问题进行管理,并不具有实际传输数据的功能。

  • 传输层

    主机A确保与主机B之间的通信并准备发送数据。这一过程叫做“建立连接”。有了这个通信连接就可以使主机A发送的电子邮件到达主机B中,并由主机B的邮件处理程序获取最终数据。此外,当通信传输结束后,有必要将连接断开。

    如上,进行建立连接或断开连接的处理(此处请注意,会话层负责决定建立连接和断开连接的时机,而传输层进行实际的建立和断开处理。) ,在两个主机之间创建逻辑上的通信连接即是传输层的主要作用。此外,传输层为确保所传输的数据到达目标地址,会在通信两端的计算机之间进行确认,如果数据没有到达,它会负责进行重发。

    传输层工作如下图:

    保证数据传输的可靠性是传输层的一个重要作用。为了确保可靠性,在这一层也会为所要传输的数据附加首部以识别这一分层的数据。然而,实际上将数据传输给对端的处理是由网络层来完成的。

  • 网络层

    网络层工作如下图:

    网络层的作用是在网络与网络相互连接的环境中,将数据从发送端主机发送到接收端主机。如下图所示(网络层与数据链路层各尽其责),两端主机之间虽然有众多数据链路,但能够将数据从主机A送到主机B也都是网络层的功劳。

    在实际发送数据时,目的地址至关重要。这个地址是进行通信的网络中唯一指定的序号。也可以把它想象为我们日常生活中使用的电话号码。只要这个目标地址确定了,就可以在众多计算机中选出该目标地址所对应的计算机发送数据。基于这个地址,就可以在网络层进行数据包的发送处理。而有了地址和网络层的包发送处理,就可以将数据发送到世界上任何一台互连设备。网络层中也会将其从上层收到的数据和地址信息等一起发送给下面的数据链路层,进行后面的处理。

  • 传输层与网络层的关系

    在不同的网络体系结构下,网络层有时也不能保证数据的可达性。例如在相当于TCP/IP网络层的IP协议中,就不能保证数据一定会发送到对端地址。因此,数据传送过程中出现数据丢失、顺序混乱等问题可能性会大大增加。像这样没有可靠性传输要求的网络层中,可以由传输层负责提供“正确传输数据的处理”。TCP/IP中,网络层与传输层相互协作以确保数据包能够传送到世界各地,实现可靠传输。

    每个分层的作用与功能越清晰,规范协议的具体内容就越简单,实现(是指通过软件编码实现具体的协议,使其能够运行于计算机当中。) 这些具体协议的工作也将会更加轻松。

  • 数据链路层、物理层

    通信传输实际上是通过物理的传输介质实现的。数据链路层的作用就是在这些通过传输介质互连的设备之间进行数据处理。

    物理层中,将数据的0、1转换为电压和脉冲光传输给物理的传输介质,而相互直连的设备之间使用地址实现传输。这种地址被称为MAC(Media Access Control,介质访问控制。) 地址,也可称为物理地址或硬件地址。采用MAC地址,目的是为了识别连接到同一个传输介质上的设备。因此,在这一分层中将包含MAC地址信息的首部附加到从网路层转发过来的数据上,将其发送到网络。

    网络层与数据链路层都是基于目标地址将数据发送给接收端的,但是网络层负责将整个数据发送给最终目标地址,而数据链路层则只负责发送一个分段内的数据。

    数据链路层与物理层的工作如下图:

  • 主机B端的处理

    接收端主机B上的处理流程正好与主机A相反,它从物理层开始将接收到的数据逐层发给上一分层进行处理,从而使用户B最终在主机B上使用邮件客户端软件接收用户A发送过来的邮件,并可以读取相应内容为“早上好”。

    可以将通信网络的功能分层来思考。每个分层上的协议规定了该分层中数据首部的格式以及首部与处理数据的顺序。

传输方式的分类

网络与通信中可以根据其数据发送方法进行多种分类。

面向有连接型与面向无连接型

通过网络发送数据,大致可以分为面向有连接与面向无连接两种类型(面向无连接型包括以太网、IP、UDP等协议。面向有连接型包括ATM、帧中继、TCP等协议。) 。

  • 面向有连接型

    面向有连接型中,在发送数据(在面向有连接型的情况下,发送端的数据不一定要分组发送。TCP是以面向有连接的方式分组发送数据的) 之前,需要在收发主机之间连接一条通信线路(在不同的分层协议中,连接的具体含义可能有所不同。在数据链路层中的连接,就是指物理的、通信线路的连接。而传输层则负责创建与管理逻辑上的连接。) 。

    面向有连接型就好比人们平常打电话,输入完对方电话号码拨出之后,只有对端拿起电话才能真正通话,通话结束后将电话机扣上就如同切断电源。因此在面向有连接的方式下,必须在通信传输前后,专门进行建立和断开连接的处理。如果与对端之间无法通信,就可以避免发送无谓的数据。

  • 面向无连接型

    面向无连接型则不要求建立和断开连接。发送端可于任何时候自由发送数据(面向无链接型采用分组交换的情况要多一些。此时,可以直接将数据理解为分组数据。) 。反之,接收端也永远不知道自己会在何时从哪里收到数据。因此,在面向无连接的情况下,接收端需要时常确认是否收到了数据。

    在面向无连接的通信中,不需要确认对端是否存在。即使接收端不存在或无法接收数据,发送端也能将数据发送出去。

TCP/IP基础知识

TCP/IP的具体含义

从字面意义上讲,有人可能会认为TCP/IP是指TCP与IP两种协议。实际生活当中有时也确实就是指这两种协议。然而在很多情况下,它只是利用IP进行通信时所必须用到的协议群的统称。具体来说,IP或ICMP、TCP或UDP、TELNET或FTP、以及HTTP等都属于TCP/IP的协议。它们与TCP或IP的关系紧密,是互联网必不可少的组成部分。TCP/IP一词泛指这些协议,因此,有时也称TCP/IP为网际协议族(网际协议族(Internet Protocol Suite):组成网际协议的一组协议。) 。

TCP/IP协议群:

TCP/IP标准化精髓

TCP/IP的协议的标准化过程与其他的标准化过程有所不同,具有两大特点:一是具有开放性,二是注重实用性,即被标准化的协议能否被实际运用。

  • 首先,开放性是由于TCP/IP的协议是由IETF讨论制定的,而IETF本身就是一个允许任何人加入进行讨论的组织。在这里人们通常采用电子邮件组的形式进行日常讨论,而邮件组可以由任何人随时订阅。
  • 其次,在TCP/IP的标准化过程中,制订某一协议的规范本身已不再那么重要,而首要任务是实现真正能够实现通信的技术。

TCP/IP在制定某个协议规范的过程中确实会考虑到这个协议实现(实现:指开发那些能够让计算机设备按照协议预期产生某些动作或行为的程序和硬件。) 的可行性。而且在某个协议的最终详细规范出炉的同时,其中一些协议已在某些设备中存在,并且能够进行通信。

互联网与TCP/IP的关系:

互联网进行通信时,需要相应的网络协议,TCP/IP原本就是为使用互联网而开发制定的协议族。因此,互联网的协议就是TCP/IP,TCP/IP就是互联网的协议。

TCP/IP协议分层模型

TCP/IP是当今计算机网络界使用最为广泛的协议。TCP/IP的知识对于那些想构筑网络、搭建网络以及管理网络、设计和制造网络设备甚至是做网络设备编程的人来说都是至关重要的。那么,TCP/IP究竟是什么呢?

TCP/IP与OSI参考模型

硬件(物理层)

TCP/IP的最底层是负责数据传输的硬件。这种硬件就相当于以太网或电话线路等物理层的设备。关于它的内容一直无法统一定义。因为只要人们在物理层面上所使用的传输媒介不同(如使用网线或无线),网络的带宽、可靠性、安全性、延迟等都会有所不同,而在这些方面又没有一个既定的指标。总之,TCP/IP是在网络互连的设备之间能够通信的前提下才被提出的协议。

网络接口层(数据链路层)

网络接口层(有时人们也将网络接口层与硬件层合并起来称作网络通信层。) 利用以太网中的数据链路层进行通信,因此属于接口层。也就是说,把它当做让NIC起作用的“驱动程序”也无妨。驱动程序是在操作系统与硬件之间起桥梁作用的软件。计算机的外围附加设备或扩展卡,不是直接插到电脑上或电脑的扩展槽上就能马上使用的,还需要有相应驱动程序的支持。例如换了一个新的NIC网卡,不仅需要硬件,还需要软件才能真正投入使用。因此,人们常常还需要在操作系统的基础上安装一些驱动软件以便使用这些附加硬件(现在也有很多是即插即拔的设备,那是因为计算机的操作系统中早已经内置安装好了对应网卡的驱动程序,而并非不需驱动。) 。

互联网层(网络层)

互联网层使用IP协议,它相当于OSI模型中的第3层网络层。IP协议基于IP地址转发分包数据。

TCP/IP分层中的互联网层与传输层的功能通常由操作系统提供。尤其是路由器,它必须得实现通过互联网层转发分组数据包的功能。

此外,连接互联网的所有主机跟路由器必须都实现IP的功能。其他连接互联网的网络设备(如网桥、中继器或集线器)就没必要一定实现IP或TCP的功能(有时为了监控和管理网桥、中继器、集线器等设备,也需要让它们具备IP、TCP的功能。) 。

  • IP

    IP是跨越网络传送数据包,使整个互联网都能收到数据的协议。IP协议使数据能够发送到地球的另一端,这期间它使用IP地址作为主机的标识(连接IP网络的所有设备必须有自己唯一的识别号以便识别具体的设备。分组数据在IP地址的基础上被发送到对端。) 。

    IP还隐含着数据链路层的功能。通过IP,相互通信的主机之间不论经过怎样的底层数据链路都能够实现通信。

    虽然IP也是分组交换的一种协议,但是它不具有重发机制。即使分组数据包未能到达对端主机也不会重发。因此,属于非可靠性传输协议。

  • ICMP

    IP数据包在发送途中一旦发生异常导致无法到达对端目标地址时,需要给发送端发送一个发生异常的通知。ICMP就是为这一功能而制定的。它有时也被用来诊断网络的健康状况。

  • ARP

    从分组数据包的IP地址中解析出物理地址(MAC地址)的一种协议。

传输层

TCP/IP的传输层有两个具有代表性的协议。该层的功能本身与OSI参考模型中的传输层类似。

传输层最主要的功能就是能够让应用程序之间实现通信。计算机内部,通常同一时间运行着多个程序。为此,必须分清是哪些程序与哪些程序在进行通信。识别这些应用程序的是端口号。

  • TCP

    TCP是一种面向有连接的传输层协议。它可以保证两端通信主机之间的通信可达。TCP能够正确处理在传输过程中丢包、传输顺序乱掉等异常情况。此外,TCP还能够有效利用带宽,缓解网络拥堵。

    然而,为了建立与断开连接,有时它需要至少7次的发包收包,导致网络流量的浪费。此外,为了提高网络的利用率,TCP协议中定义了各种各样复杂的规范,因此不利于视频会议(音频、视频的数据量既定)等场合使用。

  • UDP

    UDP有别于TCP,它是一种面向无连接的传输层协议。UDP不会关注对端是否真的收到了传送过去的数据,如果需要检查对端是否收到分组数据包,或者对端是否连接到网络,则需要在应用程序中实现。

    UDP常用于分组数据较少或多播、广播通信以及视频通信等多媒体领域。

应用层(会话层以上的分层)

TCP/IP的分层中,将OSI参考模型中的会话层、表示层和应用层的功能都集中到了应用程序中实现。这些功能有时由一个单一的程序实现,有时也可能会由多个程序实现。因此,细看TCP/IP的应用程序功能会发现,它不仅实现OSI模型中应用层的内容,还要实现会话层与表示层的功能。
客户端/服务端模型:

TCP/IP应用的架构绝大多数属于客户端/服务端模型。提供服务的程序叫服务端,接受服务的程序叫客户端。在这种通信模式中,提供服务的程序会预先被部署到主机上,等待接收任何时刻客户可能发送的请求。

客户端可以随时发送请求给服务端。有时服务端可能会有处理异常 超出负载等情况,这时客户端可以在等待片刻后重发一次请求。

  • www

    WWW(中文叫万维网,是一种互联网上数据读取的规范。有时也叫做Web、WWW或W3。) 可以说是互联网能够如此普及的一个重要原动力。用户在一种叫Web浏览器(通常可以简化称作浏览器。微软公司的Internet Explore以及Mozilla Foundation的Firefox等都属于浏览器。它们已被人们广泛使用。) 的软件上借助鼠标和键盘就可以轻轻松松地在网上自由地冲浪。也就是说轻按一下鼠标架设在远端服务器上的各种信息就会呈现到浏览器上。浏览器中既可以显示文字、图片、动画等信息,还能播放声音以及运行程序。

    浏览器与服务端之间通信所用的协议是HTTP(HyperText Transfer Protocol)。所传输数据的主要格式是HTML(HyperText Markup Language)。WWW中的HTTP属于OSI应用层的协议,而HTML属于表示层的协议。

TCP/IP分层模型与通信示例

TCP/IP是如何在媒介上进行传输的呢?下面将介绍使用TCP/IP时,从应用层到物理媒介为止数据处理的流程。

数据包首部


每个分层中,都会对所发送的数据附加一个首部,在这个首部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包首部,所要发送的内容为数据。

  • 包、帧、数据报、段、消息

    以上五个述语都用来表述数据的单位,大致区分如下:
    包可以说是全能性述语。帧用于表示数据链路层中包的单位。而数据报是IP和UDP等网络层以上的分层中包的单位。段则表示TCP数据流中的信息。最后,消息是指应用协议中数据的单位。

  • 包首部就像是协议的脸

    网络中传输的数据包由两部分组成:一部分是协议所要用到的首部,另一部分是上层传过来的数据。首部的结构由协议的具体规范详细定义。例如,识别上一层协议的域应该从包的哪一位开始取多少个比特、如何计算校验和并插入包的哪一位等。相互通信的两端计算机如果在识别协议的序号以及校验和的计算方法上不一样,就根本无法实现通信。

    因此,在数据包的首部,明确标明了协议应该如何读取数据。反过来说,看到首部,也就能够了解该协议必要的信息以及所要处理内容。因此,看到包首部就如同看到协议的规范。难怪有人会说首部就像是协议的脸了。

发送数据包

假设甲给乙发送电子邮件,内容为:“早上好”。而从TCP/IP通信上看,是从一台计算机A向另一台计算机B发送电子邮件。我们就通过这个例子来讲解一下TCP/IP通信的过程。

  • ① 应用程序处理

    启动应用程序新建邮件,将收件人邮箱填好,再由键盘输入邮件内容“早上好”,鼠标点击“发送”按钮就可以开始TCP/IP的通信了。

    首先,应用程序中会进行编码处理。例如,中午电子邮件使用GBK-2312或UTF-8进行编码。这些编码相当于OSI的表示层功能。

    编码转化后,实际邮件不一定会马上被发送出去,因为有些邮件的软件有一次同时发送多个邮件的功能,也可能会有用户点击“收信”按钮以后才一并接收新邮件的功能。像这种何时建立通信连接何时发送数据的管理功能,从某种宽泛的意义上看属于OSI参考模型中会话层的功能。

    应用在发送邮件的那一刻建立TCP连接,从而利用这个TCP连接发送数据。它的过程首先是将应用的数据发送给下一层的TCP,再做实际的转发处理。

  • ② TCP模块的处理

    TCP根据应用的指示(这种关于连接的指示相当于OSI参考模型中的会话层。) ,负责建立连接、发送数据以及断开连接。TCP提供将应用层发来的数据顺利发送至对端的可靠传输。

    为了实现TCP的这一功能,需要在应用层数据的前端附加一个TCP首部。TCP首部中包括源端口号和目标端口号(用以识别发送主机跟接收主机上的应用)、序号(用以发送的包中哪部分是数据)以及校验和(Check Sum,用来检验数据的读取是否正常进行的方法。) (用以判断数据是否被损坏)。随后将附加了TCP首部的包再发送给IP。

  • ③ IP模块的处理

    IP将TCP传过来的TCP首部和TCP数据合起来当做自己的数据,并在TCP首部的前端在加上自己的IP首部。因此,IP数据包中IP首部后面紧跟着TCP首部,然后才是应用的数据首部和数据本身。IP首部中包含接收端IP地址以及发送端IP地址。紧随IP首部的还有用来判断其后面数据是TCP还是UDP的信息。

    IP包生成后,参考路由控制表决定接受此IP包的路由或主机。随后,IP包将被发送给连接这些路由器或主机网络接口的驱动程序,以实现真正发送数据。

    如果尚不知道接收端的MAC地址,可以利用ARP(Address Resolution Protocol)查找。只要知道了对端的MAC地址,就可以将MAC地址和IP地址交给以太网的驱动程序,实现数据传输。

  • ④ 网络接口(以太网驱动)的处理

    从IP传过来的IP包,对于以太网驱动来说不过就是数据。给这数据附加上以太网首部并进行发送处理。以太网首部中包含接收端MAC地址、发送端MAC地址以及标志以太网类型的以太网数据的协议。根据上述信息产生的以太网数据包将通过物理层传输给接收端。发送处理中的FCS(Frame Check Sequence) 由硬件计算,添加到包的最后。设置FCS的目的是为了判断数据包是否由于噪声而被破坏。

经过数据链路的包

分组数据包(简称包)经过以太网的数据链路时的大致流程如下图所示。不过请注意,该图对各个包首部做了简化。

包流动时,从前往后依此被附加了以太网包首部、IP包首部、TCP包首部(或者UDP包首部)以及应用自己的包首部和数据。而包的最后则追加了以太网包尾(包首部附加于包的前端,而包尾则指追加到包的后端的部分。) (Ethernet Trailer)。

每个包首部中至少都会包含两个信息:一个是发送端和接收端地址,另一个是上一层的协议类型。

经过每个协议分层时,都必须有识别包发送端和接收端的信息。以太网会用MAC地址,IP会用IP地址,而TCP/UDP则会用端口号作为识别两端主机的地址。即使是在应用程序中,像电子邮件地址这样的信息也是一种地址标识。这些地址信息都在每个包经由各个分层时,附加到协议对应的包首部里边。

此外,每个分层的包首部中还包含一个识别位,它是用来标识上一层协议的种类信息。例如以太网的包首部中的以太网类型,IP中的协议类型以及TCP/UDP中两个端口的端口号等都起着识别协议类型的作用。就是在应用的首部信息中,有时也会包含一个用来识别其数据类型的标签。

数据包接收处理

包的接收流程是发送流程的逆序过程。发送流是从上到下,而接收流式从下到上。

  • ⑤ 网络接口(以太网驱动)的处理

    主机收到以太网包以后,首先从以太网的包首部找到MAC地址判断是否为发给自己的包。如果不是发给自己的包则丢弃数据(很多NIC产品可以设置为即使不是发给自己的包也不丢弃数据。这可以用于监控网络流量。)

    而如果接收到了恰好是发给自己的包,就查找以太网包首部中的类型域从而确定以太网协议所传送过来的数据类型。在这个例子中数据类型显然是IP包,因此再将数据传给处理IP的子程序,如果这时不是IP而是其他诸如ARP的协议,就把数据传给ARP处理。总之,如果以太网包首部的类型域包含了一个无法识别的协议类型,则丢弃数据。

  • ⑥ IP模块的处理

    IP模块收到IP包首部及后面的数据部分以后,也做类似的处理。如果判断得出包首部中的IP地址与自己的IP地址匹配,则可接收数据并从中查找上一层的协议。如果上一层是TCP就将IP包首部之后的部分传给TCP处理;如果是UDP则将IP包首部后面的部分传给UDP处理。对于有路由器的情况下,接收端地址往往不是自己的地址,此时,需要借助路由控制表,在调查应该送达的主机或路由器以后再转发数据。

  • ⑦ TCP模块的处理

    在TCP模块中,首先会计算一下校验和,判断数据是否被破坏。然后检查是否在按照序号接收数据。最后检查端口号,确定具体的应用程序。

    数据接收完毕后,接收端则发送一个“确认回执”给发送端。如果这个回执信息未能达到发送端,那么发送端会认为接收端没有接收到数据而一直反复发送。

    数据被完整地接收以后,会传给由端口号识别的应用程序。

  • ⑧ 应用程序的处理

    接收端应用程序会直接接收发送端发送的数据。通过解析数据可以获知邮件的收件人地址是乙的地址。如果主机B上没有乙的邮件信箱,那么主机B返回给发送端一个“无此收件地址”的报错信息。

数据链路

计算机网络最基本的内容——数据链路层。如果没有数据链路层,基于TCP/IP的通信也就无从谈起。因此,下面将着重介绍TCP/IP的具体数据链路,如以太网、无线局域网、PPP等。

数据链路的作用

数据链路,指OSI参考模型中的数据链路层,有时也指以太网、无线局域网等通信手段。

数据链路层的协议定义了通过通信媒介互连的设备之间传输的规范。通信媒介包括双绞线电缆、同轴电缆、光纤、电波以及红外线等介质。此外,各个设备之间有时也会通过交换机、网桥、中继器等中转数据。

实际上,各个设备之间在数据传输时,数据链路层和物理层都是必不可少的。众所周知,计算机以二进制0、1来表示信息,然而实际的通信媒介之间处理的却是电压的高低、光的闪灭以及电波的强弱等信号。把这些信号与二进制的0、1进行转换正是物理层的责任。数据链路层处理的数据也不是单纯的0、1序列,该层把它们集合为一个叫做“帧”的块,然后再进行传输。

数据链路:

  • 数据链路的段

    数据链路的段是指一个被分割的网络。然而根据使用者不同,其含义也不尽相同。例如,引入中继器将两条网线相连组成一个网络。

    这种情况下有两条数据链路:

    1. 从网络层的概念看,它是一个网络(逻辑上)→即,从网络层的立场出发,这两条网线组成一个段。
    2. 从物理层的概念看,两条网线分别是两个物体(物理上)→即,从物理层的观点出发,一条网线是一个段。
  • 网络拓扑

    网络的连接和构成的形态称为网络拓扑(Topology)。网络拓扑包括总线型、环型、星型、网状型等。拓扑一词不仅用于直观可见的配线方式上,也用于逻辑上网络的组成结构。两者有时可能会不一致。

数据链路相关技术

MAC地址

MAC地址用于识别数据链路中互连的节点(如下图)。以太网或FDDI中,根据IEEE802.3(IEEE指的是美国电气和电子工程师协会,也叫“I triple E”。IEEE802是制定局域网标准化相关规范的组织。其中IEEE802.3是关于以太网(CSMA/CD)的国际规范。) 的规范使用MAC地址。其他诸如无线LAN(IEEE802.11a/b/g/n等)、蓝牙等设备中也是用相同规格的MAC地址。

共享介质型网络

从通信介质(通信,介质)的使用方法上看,网络可分为共享介质型和非共享介质型。

共享介质型网络指由多个设备共享一个通信介质的一种网络。最早的以太网和FDDI就是介质共享型网络。在这种方式下,设备之间使用同一个载波信道进行发送和接收。为此,基本上采用半双工通信方式,并有必要对介质进行访问控制。

共享介质型网络中有两种介质访问控制方式:一种是争用方式,另一种是令牌传递方式。

  • 争用方式

    争用方式(Contention)是指争夺获取数据传输的权力,也叫CSMA(载波监听多路访问)。这种方法通常令网络中的各个站(数据链路中很多情况下称节点为“站”。) 采用先到先得的方式占用信道发送数据,如果多个站同时发送帧,则会产生冲突现象。也因此会导致网络拥堵与性能下降。

  • 令牌传递方式

    令牌传递方式是沿着令牌环发送一种叫做“令牌”的特殊报文,是控制传输的一种方式。只有获得令牌的站才能发送数据。这种方式有两个特点:一是不会有冲突,二是每个站都有通过平等循环获得令牌的机会。因此,即使网络拥堵也不会导致性能下降。

    当然,这种方式中,一个站在没有收到令牌前不能发送数据帧,因此在网络不太拥堵的情况下数据链路的利用率也就达不到100%。为此,衍生了多种令牌传递的技术。例如,早期令牌释放、令牌追加(不等待接收方的数据到达确认就将令牌发送给下一个站。) 等方式以及多个令牌同时循环等方式。这些方式的目的都是为了尽可能地提高网络性能。

非共享介质网络

非共享介质网络是指不共享介质,是对介质采取专用的一种传输控制方式。在这种方式下,网络中的每个站直连交换机,由交换机负责转发数据帧。此方式下,发送端与接收端并不共享通信介质,因此很多情况下采用全双工通信方式。

  • 半双工与全双工通信

    半双工是指,只发送或只接收的通信方式。它类似于无线电收发器,若两端同时说话,是听不见对方说的话的。而全双工不同,它允许在同一时间既可以发送数据也可以接收数据。类似于电话,接打双方可以同时说话。

IP协议

IP作为整个TCP/IP中至关重要的协议,主要负责将数据包发送给最终的目标计算机。因此,IP能够让世界上任何两台计算机之间进行通信。本章旨在详细介绍IP协议的主要功能及其规范。

IP即网际协议

TCP/IP的心脏是互联网层。这一层主要由IP(Internet Protocol)和ICMP(Internet Control Message Protocol)两个协议组成。

  • IP相当于OSI参考模型的第3层

    IP(IPv4、IPv6)相当于OSI参考模型中的第3层——网络层。

    网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫“点对点(end-to-end)通信”。

    网络层的下一层——数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递。而一旦跨越多种数据链路,就需要借助网络层。网络层可以跨越不同的数据链路,即使是在不同的数据链路上也能实现两端节点之间的数据包传输。

  • 网络层与数据链路层的关系

    数据链路层提供直连两个设备之间的通信功能。与之相比,作为网络层的IP则负责在没有直连的两个网络之间进行通信传输。那么为什么一定需要这样的两个层次呢?它们之间的区别又是什么呢?

    在此,我们以旅行为例说明这个问题。有个人要去一个很远的地方旅行,并且计划先后乘坐飞机、火车、公交车到达目的地。为此,他决定先去旅行社购买机票和火车票。

    旅行社不仅为他预订好了旅途过程中所需要的机票和火车票,甚至为他制定了一个详细行程表,详细到几点几分需要乘坐飞机或火车都一目了然。

    当然,机票和火车票只有特定区间(这里的“区间”与“段”(3.1节)同义。) 内有效,当你换乘不同公司的飞机或火车时,还需要重新购票。

IP基础知识

IP大致分为三大作用模块,它们是IP寻址、路由(最终节点为止的转发)以及IP分包与组包。

  • IP地址属于网络层地址

    作为网络层的IP,也有这种地址信息。一般叫做IP地址。IP地址用于在“连接到网络中的所有主机中识别出进行通信的目标地址”。因此,在TCP/IP通信中所有主机或路由器必须设定自己的IP地址(严格来说,要针对每块网卡至少配置一个或一个以上的IP地址。) 。

    不论一台主机与哪种数据链路连接,其IP地址的形式都保持不变。以太网、无线局域网、PPP等,都不会改变IP地址的形式(数据链路的MAC地址的形式不一定必须一致。) 。

    另外,在网桥或交换集线器等物理层或数据链路层数据包转发设备中,不需要设置IP地址(在用SNMP进行网路管理时有必要设置IP地址。不指定IP则无法利用IP进行网路管理。) 。因为这些设备只负责将IP包转化为0、1比特流转发或对数据链路帧的数据部分进行转发,而不需要应对IP协议(反之,这些设备既可以在IPv4环境中使用,也可以在IPv6环境中使用。) 。

  • 路由控制

    路由控制(Routing)是指将分组数据发送到最终目标地址的功能。即使网络非常复杂,也可以通过路由控制确定到达目标地址的通路。一旦这个路由控制的运行出现异常,分组数据极有可能“迷失”,无法到达目标地址。因此,一个数据包之所以能够成功地到达最终的目标地址,全靠路由控制。

  • 发送数据至最终目标地址

    Hop译为中文叫“跳”。它是指网络中的一个区间。IP包正是在网络中一个个跳间被转发。因此IP路由也叫做多跳路由。在每一个区间内决定着包在下一跳被转发的路径。

  • 以上是关于网络基础 CAS协议学习总结的主要内容,如果未能解决你的问题,请参考以下文章

    java基础之多线程总结二(CAS和各种常用锁)

    java基础之多线程总结二(CAS和各种常用锁)

    TCP/IP协议学习总结

    2018-2019-1 20165306 《信息安全系统设计基础》第五周学习总结

    2018-2019 20165219 《信息安全系统设计基础》第五周学习总结

    RabbitMQ学习总结-基础概念