python 验证码识别示例 复杂验证码识别
Posted 编程人生改变命运
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 验证码识别示例 复杂验证码识别相关的知识,希望对你有一定的参考价值。
在这篇博文中手把手教你如何去分割验证,然后进行识别。
一:下载验证码
验证码分析,图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因此识别改验证码难度较大
二:二值化和降噪:
三: 切割:
四:分类:
五: 测试识别率
六:总结:
综合识别率在70%左右,对于这个识别率我觉得还是挺高的,因为这个验证码的识别难度还是很大
代码:
一. 下载图片:
#-*-coding:utf-8-*- import requests def spider(): url = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" for i in range(1, 101): print("正在下载的张数是:",i) with open("./1__get_image/{}.png".format(i), "wb") as f: f.write(requests.get(url).content) spider()
二: 验证码二值化和降噪:
#-*-coding:utf-8-*- # coding:utf-8 import sys, os from PIL import Image, ImageDraw # 二值数组 t2val = {} def twoValue(image, G): for y in range(0, image.size[1]): for x in range(0, image.size[0]): g = image.getpixel((x, y)) if g > G: t2val[(x, y)] = 1 else: t2val[(x, y)] = 0 # 根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0 <N <8),当A的RGB值与周围8个点的RGB相等数小于N时,此点为噪点 # G: Integer 图像二值化阀值 # N: Integer 降噪率 0 <N <8 # Z: Integer 降噪次数 # 输出 # 0:降噪成功 # 1:降噪失败 def clearNoise(image, N, Z): for i in range(0, Z): t2val[(0, 0)] = 1 t2val[(image.size[0] - 1, image.size[1] - 1)] = 1 for x in range(1, image.size[0] - 1): for y in range(1, image.size[1] - 1): nearDots = 0 L = t2val[(x, y)] if L == t2val[(x - 1, y - 1)]: nearDots += 1 if L == t2val[(x - 1, y)]: nearDots += 1 if L == t2val[(x - 1, y + 1)]: nearDots += 1 if L == t2val[(x, y - 1)]: nearDots += 1 if L == t2val[(x, y + 1)]: nearDots += 1 if L == t2val[(x + 1, y - 1)]: nearDots += 1 if L == t2val[(x + 1, y)]: nearDots += 1 if L == t2val[(x + 1, y + 1)]: nearDots += 1 if nearDots < N: t2val[(x, y)] = 1 def saveImage(filename, size): image = Image.new("1", size) draw = ImageDraw.Draw(image) for x in range(0, size[0]): for y in range(0, size[1]): draw.point((x, y), t2val[(x, y)]) image.save(filename) for i in range(1, 101): path = "1__get_image/" + str(i) + ".png" image = Image.open(path) image = image.convert(\'L\') twoValue(image, 198) clearNoise(image, 3, 1) path1 = "2__erzhihua_jiangzao/" + str(i) + ".jpg" saveImage(path1, image.size)
三: 切割验证码:
#-*-coding:utf-8-*- from PIL import Image def smartSliceImg(img, outDir, ii,count=4, p_w=3): \'\'\' :param img: :param outDir: :param count: 图片中有多少个图片 :param p_w: 对切割地方多少像素内进行判断 :return: \'\'\' w, h = img.size pixdata = img.load() eachWidth = int(w / count) beforeX = 0 for i in range(count): allBCount = [] nextXOri = (i + 1) * eachWidth for x in range(nextXOri - p_w, nextXOri + p_w): if x >= w: x = w - 1 if x < 0: x = 0 b_count = 0 for y in range(h): if pixdata[x, y] == 0: b_count += 1 allBCount.append({\'x_pos\': x, \'count\': b_count}) sort = sorted(allBCount, key=lambda e: e.get(\'count\')) nextX = sort[0][\'x_pos\'] box = (beforeX, 0, nextX, h) img.crop(box).save(outDir + str(ii) + "_" + str(i) + ".png") beforeX = nextX for ii in range(1, 101): path = "2__erzhihua_jiangzao/" + str(ii) + ".jpg" img = Image.open(path) outDir = \'3__qiege/\' smartSliceImg(img, outDir, ii,count=4, p_w=3)
四: 训练:
#-*-coding:utf-8-*- import numpy as np import os import time from PIL import Image from sklearn.externals import joblib from sklearn.neighbors import KNeighborsClassifier def load_dataset(): X = [] y = [] for i in "23456789ABVDEFGHKMNPRSTUVWXYZ": target_path = "fenlei/" + i print(target_path) for title in os.listdir(target_path): pix = np.asarray(Image.open(os.path.join(target_path, title)).convert(\'L\')) X.append(pix.reshape(25 * 30)) y.append(target_path.split(\'/\')[-1]) X = np.asarray(X) y = np.asarray(y) return X, y def check_everyone(model): pre_list = [] y_list = [] for i in "23456789ABCDEFGHKMNPRSTUVWXYZ": part_path = "part/" + i for title in os.listdir(part_path): pix = np.asarray(Image.open(os.path.join(part_path, title)).convert(\'L\')) pix = pix.reshape(25 * 30) pre_list.append(pix) y_list.append(part_path.split(\'/\')[-1]) pre_list = np.asarray(pre_list) y_list = np.asarray(y_list) result_list = model.predict(pre_list) acc = 0 for i in result_list == y_list: print(result_list,y_list,) if i == np.bool(True): acc += 1 print(acc, acc / len(result_list)) X, y = load_dataset() knn = KNeighborsClassifier() knn.fit(X, y) joblib.dump(knn, \'yipai.model\') check_everyone(knn)
五:模型测试:
# -*- coding: utf-8 -*- import numpy as np from PIL import Image from sklearn.externals import joblib import os target_path = "1__get_image/" source_result = [] for title in os.listdir(target_path): source_result.append(title.replace(\'.png\',\'\')) def predict(model): predict_result = [] for q in range(1,101): pre_list = [] y_list = [] for i in range(0,4): part_path = "part1/" + str(q) + "_" + str(i) + ".png" # print(part_path) pix = np.asarray(Image.open(os.path.join(part_path))) pix = pix.reshape(25 * 30) pre_list.append(pix) y_list.append(part_path.split(\'/\')[-1]) pre_list = np.asarray(pre_list) y_list = np.asarray(y_list) result_list = model.predict(pre_list) print(result_list,q) predict_result.append(str(result_list[0] + result_list[1] + result_list[2] + result_list[3])) return predict_result model = joblib.load(\'yipai.model\') predict_result = predict(model) # print(source_result) # print(predict_result)
以上是关于python 验证码识别示例 复杂验证码识别的主要内容,如果未能解决你的问题,请参考以下文章
验证码识别与生成类API调用的代码示例合集:六位图片验证码生成四位图片验证码生成简单验证码识别等