深层神经网络框架的python实现
Posted demo例子集
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深层神经网络框架的python实现相关的知识,希望对你有一定的参考价值。
概述
详细
一、基础知识介绍
神经网络基础知识的介绍部分包含了大量公式及图,使用网站的在线编辑器,实现是力不从心。我写了13页的word文档,放在了解压包中,大家下载来看吧,我录了一个视频,大家可以大致浏览一下。
二、Python代码实现神经网络框架
如果大家之前对神经网络不了解的话,在看这部分内容之前,一定要掌握第一部分的基础内容,否则的话,你会看不懂源代码的,因为很多代码都是根根据公式才能写出来的。
在此处,我们把一个深度神经网络可以分为许多层,包括数据的输入层、全连接层、激活函数层、损失函数层等,另外还可以加入dropout层。如果想构建卷积神经网络的话,还可以加入卷积层、池化层等。本demo实现的神经网络框架就是基于分层结构,把每一层实现之后,大家就可以根据自己的需要,搭建自己的神经网络了。
本框架包括的核心模块及作用:
layer模块:里面定义组成神经网络各层的作用,包括数据输入层、全连接层、激活函数层、损失函数层等。
function_for_layer模块:里面定义了激活函数、损失函数、权值初始化方法等。
update_method模块:学习率的更新机制、权值的更新机制(如批量随机梯度下降法)等。
net模块:大家可以根据自己的需要,在这里定义自己的神经网络。
图1给出了神经网络框架的示意图。
另外,在上传的压缩包里面,还有一份关于神经网络框架的说明文档,大家可以根据看着说明文档读源码。我录了一个小视频 ,大家可以浏览一下。
layer模块:
数据输入层:
class data: def __init__(self): self.data_sample = 0 self.data_label = 0 self.output_sample = 0 self.output_label = 0 self.point = 0 #用于记住下一次pull数据的地方; def get_data(self, sample, label): # sample 每一行表示一个样本数据, label的每一行表示一个样本的标签. self.data_sample = sample self.data_label = label def shuffle(self): # 用于打乱顺序; random_sequence = random.sample(np.arange(self.data_sample.shape[0]), self.data_sample.shape[0]) self.data_sample = self.data_sample[random_sequence] self.data_label = self.data_label[random_sequence] def pull_data(self): #把数据推向输出 start = self.point end = start + batch_size output_index = np.arange(start, end) if end > self.data_sample.shape[0]: end = end - self.data_sample.shape[0] output_index = np.append(np.arange(start, self.data_sample.shape[0]), np.arange(0, end)) self.output_sample = self.data_sample[output_index] self.output_label = self.data_label[output_index] self.point = end % self.data_sample.shape[0]
全连接层:
class fully_connected_layer: def __init__(self, num_neuron_inputs, num_neuron_outputs): self.num_neuron_inputs = num_neuron_inputs self.num_neuron_outputs = num_neuron_outputs self.inputs = np.zeros((batch_size, num_neuron_inputs)) self.outputs = np.zeros((batch_size, num_neuron_outputs)) self.weights = np.zeros((num_neuron_inputs, num_neuron_outputs)) self.bias = np.zeros(num_neuron_outputs) self.weights_previous_direction = np.zeros((num_neuron_inputs, num_neuron_outputs)) self.bias_previous_direction = np.zeros(num_neuron_outputs) self.grad_weights = np.zeros((batch_size, num_neuron_inputs, num_neuron_outputs)) self.grad_bias = np.zeros((batch_size, num_neuron_outputs)) self.grad_inputs = np.zeros((batch_size, num_neuron_inputs)) self.grad_outputs = np.zeros((batch_size,num_neuron_outputs)) def initialize_weights(self): self.weights = ffl.xavier(self.num_neuron_inputs, self.num_neuron_outputs) # 在正向传播过程中,用于获取输入; def get_inputs_for_forward(self, inputs): self.inputs = inputs def forward(self): self.outputs = self.inputs .dot(self.weights) + np.tile(self.bias, (batch_size, 1)) # 在反向传播过程中,用于获取输入; def get_inputs_for_backward(self, grad_outputs): self.grad_outputs = grad_outputs def backward(self): #求权值的梯度,求得的结果是一个三维的数组,因为有多个样本; for i in np.arange(batch_size): self.grad_weights[i,:] = np.tile(self.inputs[i,:], (1, 1)).T .dot(np.tile(self.grad_outputs[i, :], (1, 1))) + self.weights * weights_decay #求求偏置的梯度; self.grad_bias = self.grad_outputs #求 输入的梯度; self.grad_inputs = self.grad_outputs .dot(self.weights.T) def update(self): #权值与偏置的更新; grad_weights_average = np.mean(self.grad_weights, 0) grad_bias_average = np.mean(self.grad_bias, 0) (self.weights, self.weights_previous_direction) = update_function(self.weights, grad_weights_average, self.weights_previous_direction) (self.bias, self.bias_previous_direction) = update_function(self.bias, grad_bias_average, self.bias_previous_direction)
激活函数层:
class activation_layer: def __init__(self, activation_function_name): if activation_function_name == ‘sigmoid‘: self.activation_function = ffl.sigmoid self.der_activation_function = ffl.der_sigmoid elif activation_function_name == ‘tanh‘: self.activation_function = ffl.tanh self.der_activation_function = ffl.der_tanh elif activation_function_name == ‘relu‘: self.activation_function = ffl.relu self.der_activation_function = ffl.der_relu else: print ‘输入的激活函数不对啊‘ self.inputs = 0 self.outputs = 0 self.grad_inputs = 0 self.grad_outputs = 0 def get_inputs_for_forward(self, inputs): self.inputs = inputs def forward(self): #需要激活函数 self.outputs = self.activation_function(self.inputs) def get_inputs_for_backward(self, grad_outputs): self.grad_outputs = grad_outputs def backward(self): #需要激活函数的导数 self.grad_inputs = self.grad_outputs * self.der_activation_function(self.inputs)
损失函数层:
class loss_layer: def __init__(self, loss_function_name): self.inputs = 0 self.loss = 0 self.accuracy = 0 self.label = 0 self.grad_inputs = 0 if loss_function_name == ‘SoftmaxWithLoss‘: self.loss_function =ffl.softmaxwithloss self.der_loss_function =ffl.der_softmaxwithloss elif loss_function_name == ‘LeastSquareError‘: self.loss_function =ffl.least_square_error self.der_loss_function =ffl.der_least_square_error else: print ‘输入的损失函数不对吧,别继续了,重新输入吧‘ def get_label_for_loss(self, label): self.label = label def get_inputs_for_loss(self, inputs): self.inputs = inputs def compute_loss_and_accuracy(self): #计算正确率 if_equal = np.argmax(self.inputs, 1) == np.argmax(self.label, 1) self.accuracy = np.sum(if_equal) / batch_size #计算训练误差 self.loss = self.loss_function(self.inputs, self.label) def compute_gradient(self): self.grad_inputs = self.der_loss_function(self.inputs, self.label)
function_for_layer模块:
激活函数的定义:
# sigmoid函数及其导数的定义 def sigmoid(x): return 1 / (1 + np.exp(-x)) def der_sigmoid(x): return sigmoid(x) * (1 - sigmoid(x)) # tanh函数及其导数的定义 def tanh(x): return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x)) def der_tanh(x): return 1 - tanh(x) * tanh(x) # ReLU函数及其导数的定义 def relu(x): temp = np.zeros_like(x) if_bigger_zero = (x > temp) return x * if_bigger_zero def der_relu(x): temp = np.zeros_like(x) if_bigger_equal_zero = (x >= temp) #在零处的导数设为1 return if_bigger_equal_zero * np.ones_like(x)
损失函数的定义:
# SoftmaxWithLoss函数及其导数的定义 def softmaxwithloss(inputs, label): temp1 = np.exp(inputs) probability = temp1 / (np.tile(np.sum(temp1, 1), (inputs.shape[1], 1))).T temp3 = np.argmax(label, 1) #纵坐标 temp4 = [probability[i, j] for (i, j) in zip(np.arange(label.shape[0]), temp3)] loss = -1 * np.mean(np.log(temp4)) return loss def der_softmaxwithloss(inputs, label): temp1 = np.exp(inputs) temp2 = np.sum(temp1, 1) #它得到的是一维的向量; probability = temp1 / (np.tile(temp2, (inputs.shape[1], 1))).T gradient = probability - label return gradient
权值初始化方法:
# xavier 初始化方法 def xavier(num_neuron_inputs, num_neuron_outputs): temp1 = np.sqrt(6) / np.sqrt(num_neuron_inputs+ num_neuron_outputs + 1) weights = stats.uniform.rvs(-temp1, 2 * temp1, (num_neuron_inputs, num_neuron_outputs)) return weights
update_method模块:
学习率的更新机制:
#定义一些需要的全局变量 momentum = 0.9 base_lr = 0 # 在建造net是对它初始化; iteration = -1 # 它常常需要在训练过程中修改 ########################### 定义学习率的变化机制函数 #################################### # inv方法 def inv(gamma = 0.0005, power = 0.75): if iteration == -1: assert False, ‘需要在训练过程中,改变update_method 模块里的 iteration 的值‘ return base_lr * np.power((1 + gamma * iteration), -power) # 固定方法 def fixed(): return base_lr
批量随机梯度下降法:
# 基于批量的随机梯度下降法 def batch_gradient_descent(weights, grad_weights, previous_direction): lr = inv() direction = momentum * previous_direction + lr * grad_weights weights_now = weights - direction return (weights_now, direction)
net模块:
例如定义一个四层的神经网络:
#搭建一个四层的神经网络; self.inputs_train = layer.data() # 训练样本的输入层 self.inputs_test = layer.data() # 测试样本的输入层 self.fc1 = layer.fully_connected_layer(784, 50) self.ac1 = layer.activation_layer(‘tanh‘) self.fc2 = layer.fully_connected_layer(50, 50) self.ac2 = layer.activation_layer(‘tanh‘) self.fc3 = layer.fully_connected_layer(50, 10) self.loss = layer.loss_layer(‘SoftmaxWithLoss‘)
定义网络的一些其它功能接口,例如载入训练样本与测试样本:
def load_sample_and_label_train(self, sample, label): self.inputs_train.get_data(sample, label) def load_sample_and_label_test(self, sample, label): self.inputs_test.get_data(sample, label)
定义网络的初始化接口:
def initial(self): self.fc1.initialize_weights() self.fc2.initialize_weights() self.fc3.initialize_weights()
定义在训练过程中网络的前向传播与反向传播:
def forward_train(self): self.inputs_train.pull_data() self.fc1.get_inputs_for_forward(self.inputs_train.outputs) self.fc1.forward() self.ac1.get_inputs_for_forward(self.fc1.outputs) self.ac1.forward() self.fc2.get_inputs_for_forward(self.ac1.outputs) self.fc2.forward() self.ac2.get_inputs_for_forward(self.fc2.outputs) self.ac2.forward() self.fc3.get_inputs_for_forward(self.ac2.outputs) self.fc3.forward() self.loss.get_inputs_for_loss(self.fc3.outputs) self.loss.get_label_for_loss(self.inputs_train.output_label) self.loss.compute_loss_and_accuracy() def backward_train(self): self.loss.compute_gradient() self.fc3.get_inputs_for_backward(self.loss.grad_inputs) self.fc3.backward() self.ac2.get_inputs_for_backward(self.fc3.grad_inputs) self.ac2.backward() self.fc2.get_inputs_for_backward(self.ac2.grad_inputs) self.fc2.backward() self.ac1.get_inputs_for_backward(self.fc2.grad_inputs) self.ac1.backward() self.fc1.get_inputs_for_backward(self.ac1.grad_inputs) self.fc1.backward()
定义在测试过程中的网络正向传播:
def forward_test(self): self.inputs_test.pull_data() self.fc1.get_inputs_for_forward(self.inputs_test.outputs) self.fc1.forward() self.ac1.get_inputs_for_forward(self.fc1.outputs) self.ac1.forward() self.fc2.get_inputs_for_forward(self.ac1.outputs) self.fc2.forward() self.ac2.get_inputs_for_forward(self.fc2.outputs) self.ac2.forward() self.fc3.get_inputs_for_forward(self.ac2.outputs) self.fc3.forward() self.loss.get_inputs_for_loss(self.fc3.outputs) self.loss.get_label_for_loss(self.inputs_test.output_label) self.loss.compute_loss_and_accuracy()
定义权值与梯度的更新:
def update(self): self.fc1.update() self.fc2.update() self.fc3.update()
三、使用在net模块定义好的神经网络识别手写字体
在第二部分中的net模块中,我们定义了一个784*50*50*10的神经网络,训练该神经网络识别手写体数字。
手写体数字简介:来自Yann LeCun 等人维护一个手写数字集,训练样本包括60000个,测试样本为10000个,可以在官网http://yann.lecun.com/exdb/mnist/index.html下载。 但是官网的数据为二进制的数据,不方便用,不过大家不用但心,我已经把它转化为了matlab中常用的.mat格式的数据,下载压缩包/demo/data.mat中查看。 手写字体长这样子:
写一个train.py文件,使用它来训练神经网络并测试。
# 导入数据; data = scipy.io.loadmat(‘data.mat‘) train_label = data[‘train_label‘] train_data = data[‘train_data‘] test_label = data[‘test_label‘] test_data = data[‘test_data‘] #一些相关的重要参数 num_train = 800 lr = 0.1 weight_decay = 0.001 train_batch_size = 100 test_batch_size = 10000 # 创建网络并加载样本 solver = net.net(train_batch_size, lr, weight_decay) solver.load_sample_and_label_train(train_data, train_label) solver.load_sample_and_label_test(test_data, test_label) # 初始化权值; solver.initial() # 用于存放训练误差 train_error = np.zeros(num_train) # 训练 for i in range(num_train): print ‘第‘, i, ‘次迭代‘ net.layer.update_method.iteration = i solver.forward_train() solver.backward_train() solver.update() train_error[i] = solver.loss.loss plt.plot(train_error) plt.show() #测试 solver.turn_to_test(test_batch_size) solver.forward_test() print ‘测试样本的识别率为:‘, solver.loss.accuracy
运行train.py程序,得到:
在网络训练过程中,训练误差的下降曲线为:
测试样本 的识别率为:
当然,大家可以通过调节参数来调高识别率。
四、项目文件目录截图
注:本文著作权归作者,由demo大师发表,拒绝转载,转载需要作者授权
以上是关于深层神经网络框架的python实现的主要内容,如果未能解决你的问题,请参考以下文章
TensorFlow(实战深度学习框架)----深层神经网络(第四章)
改善深层神经网络-week3编程题(TensorFlow实现手势数字识别)
深度学习Trick——用权重约束减轻深层网络过拟合|附(Keras)实现代码
长短期记忆网络 LSTM 深层循环神经网络 Deep RNN 双向循环神经网络 Bidirectional RNN 动手学深度学习v2
长短期记忆网络 LSTM 深层循环神经网络 Deep RNN 双向循环神经网络 Bidirectional RNN 动手学深度学习v2