SVM python小样例

Posted 我们都是大好青年

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SVM python小样例相关的知识,希望对你有一定的参考价值。

SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法
在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上
基于最大间隔的分割数据
优点:泛化错误率低,计算开销不大,结果易解释
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题
适用数据类型:数值型和标称型数据
寻找最大间隔:
分割超平面的形式可以写成W^T *x+b,要计算点A到分割超平面的距离,就必须给出点
到分割面的法线或垂线的长度,该值为|w^T+b|/||w||.这里的常数b类似于Logistic回
归中的结局w0 .
SVM的类别标签采用的是1和-1,而不是0和1,这是为什么呢?
这是由于-1和+1仅仅相差一个符号,方便数学上的处理,实质上是和目标函数的选取(算法的判别函数)有关。
当计算数据点到分割面的距离并确定分割面的放置位置时,间隔通过label*(W^T *x+b)来计算,这是就能体
现出-1和+1的好处了。即只要判断正确,判别条件总是大于1.
至此,一切都很完美,但是这里有个假设:数据必须100%线性可分。目前为止,物品们直到几乎所有数据
都不那么“干净”。这时,我们就可以通过引入所谓的松弛i按量,来允许有些数据点可以处于分割面的错误一侧。
SVM应用的一般框架
SVM的一般流程
(1)收集数据:可以适用任意方法
(2)准备数据:需要数值型数据
(3)分析数据:有助于可视化分割 超平面
(4)训练算法:SVM的大部分时间都源自训练,该过程主要实现两个参数的调优
(5)测试算法:十分简单的计算过程就可以实现
(6)使用算法:几乎所有分类问题都可以使用SVM,值得一提的是,SVM本身是一个二类分类器,对多类问题
应用SVM需要对代码做一些修改。
SMO表示序列的最小优化,这些小优化问题往往容易为蟹,并且对他们进行顺序求解的结果将与他们作为整
体来求解的结果完全一致。在结果完全相同时,SMO算法的求解时间最短。
SMO算法的求解目标是求一系列的alpha和b,一旦求出alpha,就很容易计算出权重向量w并得到分割超平面
SMO算法的工作原理是:每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,那么就增大
其中一个同时减小另一个。这里所谓的“合适”就是指两个alpha必须符合一定的条件,条件之一就是这两个
alpha必须要在间隔边界之外,而其第二个条件则是这两个alpha还没有进行过区间化或者不再边界上。

  1 from numpy import *
  2 from time import sleep
  3 
  4 def loadDataSet(fileName):
  5     dataMat = []; labelMat = []
  6     fr = open(fileName)
  7     for line in fr.readlines():
  8         lineArr = line.strip().split(	)
  9         dataMat.append([float(lineArr[0]), float(lineArr[1])])
 10         labelMat.append(float(lineArr[2]))
 11     return dataMat,labelMat
 12 
 13 #i是第一个alpha的下标,m是所有alpha的数目。只要函数值不等于输入值i,函数就会进行随机选择。
 14 def selectJrand(i,m):
 15     j=i #we want to select any J not equal to i
 16     while (j==i):
 17         j = int(random.uniform(0,m))
 18     return j
 19 
 20 #该函数用于调整大于H或小于L的alpha值。
 21 def clipAlpha(aj,H,L):
 22     if aj > H:
 23         aj = H
 24     if L > aj:
 25         aj = L
 26     return aj
 27 
 28 ‘‘‘
 29 创建一个alpha向量并将其初始化为0向量
 30 当迭代次数小于最大迭代次数时(外循环)
 31     对数据集中的每个数据向量(内循环):
 32     如果该数据向量可以被优化:
 33         随机选择另外一个数据向量
 34         同时优化这两个向量
 35         如果两个向量都不能被优化,退出内循环
 36 如果所有向量都没被优化,增加迭代数目,继续下一次循环
 37 ‘‘‘
 38 def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
 39     dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
 40     b = 0; m,n = shape(dataMatrix)
 41     alphas = mat(zeros((m,1)))
 42     iter = 0
 43     while (iter < maxIter):
 44         alphaPairsChanged = 0
 45         for i in range(m):
 46             fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
 47             Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
 48             if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
 49                 j = selectJrand(i,m)
 50                 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
 51                 Ej = fXj - float(labelMat[j])
 52                 alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
 53                 if (labelMat[i] != labelMat[j]):
 54                     L = max(0, alphas[j] - alphas[i])
 55                     H = min(C, C + alphas[j] - alphas[i])
 56                 else:
 57                     L = max(0, alphas[j] + alphas[i] - C)
 58                     H = min(C, alphas[j] + alphas[i])
 59                 if L==H: print("L==H"); continue
 60                 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
 61                 if eta >= 0: print("eta>=0"); continue
 62                 alphas[j] -= labelMat[j]*(Ei - Ej)/eta
 63                 alphas[j] = clipAlpha(alphas[j],H,L)
 64                 if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue
 65                 alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
 66                                                                         #the update is in the oppostie direction
 67                 b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
 68                 b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
 69                 if (0 < alphas[i]) and (C > alphas[i]): b = b1
 70                 elif (0 < alphas[j]) and (C > alphas[j]): b = b2
 71                 else: b = (b1 + b2)/2.0
 72                 alphaPairsChanged += 1
 73                 print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
 74         if (alphaPairsChanged == 0): iter += 1
 75         else: iter = 0
 76         print ("iteration number: %d" % iter)
 77     return b,alphas
 78 
 79 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
 80     m,n = shape(X)
 81     K = mat(zeros((m,1)))
 82     if kTup[0]==lin: K = X * A.T   #linear kernel
 83     elif kTup[0]==rbf:
 84         for j in range(m):
 85             deltaRow = X[j,:] - A
 86             K[j] = deltaRow*deltaRow.T
 87         K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
 88     else: raise NameError(Houston We Have a Problem --  89     That Kernel is not recognized)
 90     return K
 91 
 92 #完整版的SMO的支持函数
 93 class optStruct:
 94     def __init__(self, dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
 95         self.X = dataMatIn
 96         self.labelMat = classLabels
 97         self.C = C
 98         self.tol = toler
 99         self.m = shape(dataMatIn)[0]
100         self.alphas = mat(zeros((self.m, 1)))
101         self.b = 0
102         self.eCache = mat(zeros((self.m, 2)))  # first column is valid flag
103         self.K = mat(zeros((self.m, self.m)))
104         for i in range(self.m):
105             self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
106 
107 #误差缓存
108 def calcEk(oS, k):
109     fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
110     Ek = fXk - float(oS.labelMat[k])
111     return Ek
112 
113 #内循环中的启发式方法
114 def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
115     maxK = -1;
116     maxDeltaE = 0;
117     Ej = 0
118     oS.eCache[i] = [1, Ei]  # set valid #choose the alpha that gives the maximum delta E
119     validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
120     if (len(validEcacheList)) > 1:
121         for k in validEcacheList:  # loop through valid Ecache values and find the one that maximizes delta E
122             if k == i: continue  # don‘t calc for i, waste of time
123             Ek = calcEk(oS, k)
124             deltaE = abs(Ei - Ek)
125             #选择具有最大步长的j
126             if (deltaE > maxDeltaE):
127                 maxK = k;
128                 maxDeltaE = deltaE;
129                 Ej = Ek
130         return maxK, Ej
131     else:  # in this case (first time around) we don‘t have any valid eCache values
132         j = selectJrand(i, oS.m)
133         Ej = calcEk(oS, j)
134     return j, Ej
135 
136 
137 def updateEk(oS, k):  # after any alpha has changed update the new value in the cache
138     Ek = calcEk(oS, k)
139     oS.eCache[k] = [1, Ek]
140 
141 def innerL(i, oS):
142     Ei = calcEk(oS, i)
143     if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
144         j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
145         alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
146         if (oS.labelMat[i] != oS.labelMat[j]):
147             L = max(0, oS.alphas[j] - oS.alphas[i])
148             H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
149         else:
150             L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
151             H = min(oS.C, oS.alphas[j] + oS.alphas[i])
152         if L==H: print("L==H"); return 0
153         eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
154         if eta >= 0: print ("eta>=0"); return 0
155         oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
156         oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
157         updateEk(oS, j) #added this for the Ecache
158         if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0
159         oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
160         updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
161         b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
162         b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
163         if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
164         elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
165         else: oS.b = (b1 + b2)/2.0
166         return 1
167     else: return 0
168 
169 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=(lin, 0)):    #full Platt SMO
170     oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
171     iter = 0
172     entireSet = True; alphaPairsChanged = 0
173     while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
174         alphaPairsChanged = 0
175         if entireSet:   #go over all
176             for i in range(oS.m):
177                 alphaPairsChanged += innerL(i,oS)
178                 print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
179             iter += 1
180         else:#go over non-bound (railed) alphas
181             nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
182             for i in nonBoundIs:
183                 alphaPairsChanged += innerL(i,oS)
184                 print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
185             iter += 1
186         if entireSet: entireSet = False #toggle entire set loop
187         elif (alphaPairsChanged == 0): entireSet = True
188         print("iteration number: %d" % iter)
189     return oS.b,oS.alphas
190 
191 def calcWs(alphas,dataArr,classLabels):
192     X = mat(dataArr); labelMat = mat(classLabels).transpose()
193     m,n = shape(X)
194     w = zeros((n,1))
195     for i in range(m):
196         w += multiply(alphas[i]*labelMat[i],X[i,:].T)
197     return w
198 
199 
200 
201 dataArr,labelArr=loadDataSet(testSet.txt)
202 b,alphas=smoP(dataArr,labelArr,0.6,0.001,40)
203 ws=calcWs(alphas,dataArr,labelArr)
204 print(ws)

 































以上是关于SVM python小样例的主要内容,如果未能解决你的问题,请参考以下文章

决策树python实现小样例

用两个小样例来解释单例模式中的“双重锁定”

java中tcp小样例

简单的ADO.NET连接数据小样例

D3D 线列 小样例

静态函数调用非静态函数的小样例