python 迭代器与生成器

Posted wbyixx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 迭代器与生成器相关的知识,希望对你有一定的参考价值。

 

 

回顾python中的for循环

如果用索引取值,你可以取到任意位置的值,前提是你要知道这个值在什么位置。

如果用for循环来取值,我们把每一个值都取到,不需要关心每一个值的位置,因为只能顺序的取值,并不能跳过任何一个直接去取其他位置的值。

 

什么叫迭代

“可迭代”,就应该可以被for循环

字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的

可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。

 

可迭代协议

假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。

可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。

 

迭代器iterator

迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。

 

for循环就是基于迭代器协议提供了一个统一的可以遍历所有对象的方法,

即在遍历之前,先调用对象的__iter__方法将其转换成一个迭代器,

然后使用迭代器协议去实现循环访问,这样所有的对象就都可以通过for循环来遍历了

 

生成器

迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。

如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。

Python中提供的生成器:

1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行

2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表

生成器Generator:

  本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)

  特点:惰性运算,开发者自定义

 

 

生成器函数

一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值,但是yield又不同于return,

return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。

每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。

import time
def genrator_fun1():
    a = 1
    print(现在定义了a变量)
    yield a
    b = 2
    print(现在又定义了b变量)
    yield b

g1 = genrator_fun1()
print(g1 : ,g1)       #打印g1可以发现g1就是一个生成器
print(-*20)   
print(next(g1))
time.sleep(1)   #sleep一秒看清执行过程
print(next(g1))

初识生成器函数

生成器的好处就是不会一下子在内存中生成太多数据

#初识生成器二

def produce():
    """生产衣服"""
    for i in range(2000000):
        yield "生产了第%s件衣服"%i

product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g:         #要一批衣服,比如5件
    print(i)
    num +=1
    if num == 5:
        break

#到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿

初识生成器二
import time


def tail(filename):
    f = open(filename)
    f.seek(0, 2) #从文件末尾算起
    while True:
        line = f.readline()  # 读取文件中新的文本行
        if not line:
            time.sleep(0.1)
            continue
        yield line

tail_g = tail(tmp)
for line in tail_g:
    print(line)

生成器监听文件输入的例子
def generator():
    print(123)
    content = yield 1
    print(=======,content)
    print(456)
    yield2

g = generator()
ret = g.__next__()
print(***,ret)
ret = g.send(hello)   #send的效果和next一样
print(***,ret)

#send 获取下一个值的效果和next基本一致
#只是在获取下一个值的时候,给上一yield的位置传递一个数据
#使用send的注意事项
    # 第一次使用生成器的时候 是用next获取下一个值
    # 最后一个yield不能接受外部的值
技术分享图片
def gen1():
    for c in AB:
        yield c
    for i in range(3):
        yield i

print(list(gen1()))

def gen2():
    yield from AB
    yield from range(3)

print(list(gen2()))

yield from
View Code
技术分享图片
def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
next(g_avg)
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))

计算移动平均值(1)
View Code
技术分享图片
def init(func):  #在调用被装饰生成器函数的时候首先用next激活生成器
    def inner(*args,**kwargs):
        g = func(*args,**kwargs)
        next(g)
        return g
    return inner

@init
def averager():
    total = 0.0
    count = 0
    average = None
    while True:
        term = yield average
        total += term
        count += 1
        average = total/count


g_avg = averager()
# next(g_avg)   在装饰器中执行了next方法
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))

计算移动平均值(2)_预激协程的装饰器
View Code

 

列表推导式和生成器表达式

1.把列表解析的[]换成()得到的就是生成器表达式

2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存

3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,所以,我们可以直接这样计算一系列值的和:

sum(x ** 2 for x in range(4))

而不用多此一举的先构造一个列表:

sum([x ** 2 for x in range(4)]) 

 

其他推导式 http://www.cnblogs.com/Eva-J/articles/7276796.html

以上是关于python 迭代器与生成器的主要内容,如果未能解决你的问题,请参考以下文章

python 基础篇 13 迭代器与生成器

Python迭代器与生成器

第五篇Python之迭代器与生成器

Python迭代器与生成器

Python迭代器与生成器

python---迭代器与生成器