阴影实现
Posted 就当笔记吧
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了阴影实现相关的知识,希望对你有一定的参考价值。
相机控制
实现的功能:
1) 相机跟随, 2) 围绕Player旋转(左右和上下调整相机),3) 镜头zoom
using UnityEngine; [RequireComponent(typeof(Camera))] public class ThirdPersonCamera : MonoBehaviour /// 摄像机和碰撞体的交点向摄像机的观察点移动的距离 private const float Collision_Return_Dis = 0.5f; private Transform m_CachedCamera; public Transform m_Player; public Vector3 m_Offset = new Vector3(0.0f, 0.5f, 0.0f); //到原点的距离为旋转半径 public float m_HorizontalAimingSpeed = 10.0f; //水平方向旋转速度 public float m_VerticalAimingSpeed = 10.0f; //垂直方向旋转速度 private float m_AngleH = 0.0f; //水平方向旋转角度 public float m_MaxVerticalAngle = -5.0f; public float m_MinVerticalAngle = -50.0f; private float m_AngleV = -30.0f; public float m_MinDistance = 1.0f; //最小zoom距离 public float m_MaxDistance = 6.0f; //最大zoom距离 private float m_Distance = 0.0f; //当前zoom距离 public float m_ZoomSpeed = 2.0f; void Awake() m_CachedCamera = GetComponent<Camera>().transform; m_Distance = (m_MinDistance + m_MaxDistance) * 0.5f; Debug.Log($"Awake: dist: m_Distance"); void Update() float mousex = 0; float mousey = 0; if (Input.GetMouseButton(0)) mousex = Input.GetAxis("Mouse X"); mousey = Input.GetAxis("Mouse Y"); m_AngleH += (Mathf.Clamp(mousex, -1.0f, 1.0f) * m_HorizontalAimingSpeed); m_AngleV += (Mathf.Clamp(mousey, -1.0f, 1.0f) * m_VerticalAimingSpeed); m_AngleV = Mathf.Clamp(m_AngleV, m_MinVerticalAngle, m_MaxVerticalAngle); float zoom = Input.GetAxis("Mouse ScrollWheel"); m_Distance -= zoom * m_ZoomSpeed; m_Distance = Mathf.Clamp(m_Distance, m_MinDistance, m_MaxDistance); Quaternion animRotation = Quaternion.Euler(-m_AngleV, m_AngleH, 0.0f); //鼠标上移x角度变小, 下移变大 m_CachedCamera.rotation = animRotation; Vector3 cameraBack = animRotation * Vector3.back; //用四元数计算Camera的back, 等同于mCamera.forward(z取反) cameraBack.Normalize(); Quaternion camYRotation = Quaternion.Euler(0.0f, m_AngleH, 0.0f); Vector3 lookatpos = m_Player.position + camYRotation * m_Offset; m_CachedCamera.position = lookatpos + cameraBack * m_Distance; // 计算碰撞后的摄像机点 RaycastHit rayhit; bool hit = Physics.Raycast(lookatpos, cameraBack, out rayhit, m_Distance); if (hit) // 屏蔽角色碰撞 bool charcol = rayhit.collider as CharacterController; if (!charcol) m_CachedCamera.position = rayhit.point - cameraBack * Collision_Return_Dis; // 距离修正在范围内(1, 避免摄像机穿插进入角色) float distance = Vector3.Distance(m_CachedCamera.position, lookatpos); distance = Mathf.Clamp(distance, m_MinDistance, m_MaxDistance); m_CachedCamera.position = lookatpos + cameraBack * distance;
角色控制
基于CharacterController的行走和跳跃
using UnityEngine; public class PlayerControl : MonoBehaviour private const float Dir_Speed = 10; private const float Gravity = -10; public CharacterController m_characterCtrl; public Animator m_Animator; public float m_MoveSpeed = 2; public float m_JumpSpeed = 4; private bool m_WasGrounded; //上一帧在地面上 private bool m_IsGrounded; //当前在地面上 private Vector3 m_CurMoveDir = Vector3.zero; private float m_JumpTimeStamp = 0; private float m_MinJumpInterval = 0.25f; //控制跳跃间隔 private bool m_JumpInput = false; //控制一帧触发1次 private Vector3 m_VerticalSpeed = Vector3.zero; private Vector3 m_DownChecker = new Vector3(0, -0.002f, 0); //在地面上时, 不断检测是否还在地面上用 private void Awake() if (!m_characterCtrl) m_characterCtrl = GetComponent<CharacterController>(); if (!m_Animator) m_Animator = GetComponent<Animator>(); private void Update() if (!m_JumpInput && Input.GetKey(KeyCode.Space)) m_JumpInput = true; private void FixedUpdate() m_Animator.SetBool("Grounded", m_IsGrounded); //if (m_characterCtrl.isGrounded) Debug.Log($"fixed: true"); DirectUpdate(); m_WasGrounded = m_IsGrounded; m_JumpInput = false; private void DirectUpdate() float v = Input.GetAxis("Vertical"); float h = Input.GetAxis("Horizontal"); Transform camera = Camera.main.transform; Vector3 inputDir = camera.forward * v + camera.right * h; //摇杆上下为相机forward方向, 左右为相机right方向 float inputForce = inputDir.magnitude; //区分力度的情况 inputDir.y = 0; if (inputDir != Vector3.zero) m_CurMoveDir = Vector3.Slerp(m_CurMoveDir, inputDir, Time.deltaTime * Dir_Speed); transform.rotation = Quaternion.LookRotation(m_CurMoveDir); var flags = m_characterCtrl.Move(m_CurMoveDir * m_MoveSpeed * Time.deltaTime); //Debug.Log($"flags: flags"); m_Animator.SetFloat("MoveSpeed", inputForce); //力度 else m_Animator.SetFloat("MoveSpeed", 0); JumpingAndLanding(); private void JumpingAndLanding() bool jumpCooldownOver = (Time.time - m_JumpTimeStamp) >= m_MinJumpInterval; if (jumpCooldownOver && m_IsGrounded && m_JumpInput) //地面上按下跳, 多次跳要有一定间隔 m_JumpTimeStamp = Time.time; m_IsGrounded = false; m_VerticalSpeed.y = m_JumpSpeed; if (!m_IsGrounded) //不在地面上时, 要不断下落 m_characterCtrl.Move(m_VerticalSpeed * Time.deltaTime); m_IsGrounded = m_characterCtrl.isGrounded; if (m_IsGrounded) m_VerticalSpeed.y = 0; else m_VerticalSpeed.y += Gravity * Time.deltaTime; //Debug.Log($"isGround: m_characterCtrl.isGrounded"); else //在地面上时, 也要不断检测是否需要下落(比如: 从一个高的平台走到低的平台) var flags = m_characterCtrl.Move(m_DownChecker); //在地面上的时候, 走不下去的, 会返回below, 并回弹 if (flags == CollisionFlags.None) m_IsGrounded = false; m_VerticalSpeed.y = 0; if (!m_WasGrounded && m_IsGrounded) //之前不在地面上, 现在在地面上了 m_Animator.SetTrigger("Land"); if (!m_IsGrounded && m_WasGrounded) //之前在地面上的, 现在不在地面上了 m_Animator.SetTrigger("Jump");
模型资源: Character Pack: Free Sample | 3D 人形角色 | Unity Asset Store
地面资源以及代码参考: GitHub - xieliujian/UnityDemo_PlanarShadow: UnityDemo平面阴影
最终效果
可以看到目前还没有阴影,后面会在这基础上展示在平面上以及平台上各种阴影的表现情况
其他参考
CharacterController 角色控制器实现移动和跳跃 - 盘子脸 - 博客园 (cnblogs.com)
WebGL入门(四十二)-使用(FBO)实现阴影效果
1. demo效果
2. 相关知识点
现实生活中阴影无处不在,在三维世界中想要获得立体感,阴影必不可少,这里学习通过 阴影贴图 (shadow map) 实现阴影绘制的方法,阴影贴图又称 深度贴图(depth map)
2.1 阴影如何产生
如上图,坐标原点出有一光源,中间有一个三角形,右侧有一投影面,如果三角形上有一点P1,从光源发出一条光线经过P1点,在投影面的上投射的点是P2,这时P2点的位置就在阴影中,同理无数的光线穿过三角形会投射出一个区域,即上图中紫色区域,这个区域就是三角形的投影,在这个区域外则没有阴影
2.2 阴影实现原理
阴影实现原理并不难,分为两步:准备阴影贴图和阴影映射(阴影绘制)
2.2.1 准备阴影贴图
准备阴影贴图需要一对专门的着色器,即顶点着色器和片元着色器。在顶点着色器中需要接收一个模型视图投影矩阵,这个矩阵是以光源位置为视点位置计算的模型视图投影矩阵。在片元着色器中需要获取片元的深度值,即gl_FragCoord.z,存放在片元颜色的R分量中,但并不会绘图,而是写到阴影贴图中
着色器实现如下:
var SHADOW_VSHADER_SOURCE =
'attribute vec4 a_Position;\\n' +
'uniform mat4 u_MvpMatrix;\\n' + //声明uniform变量u_MvpMatrix,存放以光源位置为视点位置的模型视图投影矩阵
'void main() {\\n' +
' gl_Position = u_MvpMatrix * a_Position;\\n' +
'}\\n';
//绘制阴影的片元着色器
var SHADOW_FSHADER_SOURCE =
'#ifdef GL_ES\\n' +
'precision mediump float;\\n' +
'#endif\\n' +
'void main() {\\n' +
' gl_FragColor = vec4(gl_FragCoord.z, 0.0, 0.0, 0.0);\\n' + //将片元深度值z写入RGBA颜色的R分量
'}\\n';
2.2.2 阴影映射
阴影映射其实就是绘制图形,这里需要另外一对着色器,这次在顶点着色器中接收的模型视图投影矩阵,是原来场景中的模型视图投影矩阵。即以原来的视点坐标观察物体的计算出的矩阵。在片元着色器中需要将片元坐标转换为光源坐标系中的坐标,即上一步中以光源位置为视点的坐标系,然后使用当前片元的深度值与阴影贴图中记录的深度值做比较,如果前者大,则当前片元处在阴影之中。用较深暗的颜色绘制
着色器实现如下:
var VSHADER_SOURCE =
'attribute vec4 a_Position;\\n' + //声明attribute变量a_Position,用来存放顶点位置信息
'attribute vec4 a_Color;\\n' + //声明attribute变量a_Color,用来存放顶点颜色
'uniform mat4 u_MvpMatrix;\\n' + //声明uniform变量u_MvpMatrix,用来存放模型视图投影组合矩阵
'uniform mat4 u_MvpMatrixFromLight;\\n' +
'varying vec4 v_PositionFromLight;\\n' +
'varying vec4 v_Color;\\n' +
'void main() {\\n' +
' gl_Position = u_MvpMatrix * a_Position;\\n' +
' v_PositionFromLight = u_MvpMatrixFromLight * a_Position;\\n' +
' v_Color = a_Color;\\n' +
'}\\n';
var FSHADER_SOURCE =
'#ifdef GL_ES\\n' +
'precision mediump float;\\n' +
'#endif\\n' +
'uniform sampler2D u_ShadowMap;\\n' + //声明uniform变量u_ShadowMap,存放纹理单元编号
'varying vec4 v_PositionFromLight;\\n' +
'varying vec4 v_Color;\\n' +
'void main() {\\n' +
' vec3 shadowCoord = (v_PositionFromLight.xyz/v_PositionFromLight.w)/2.0 + 0.5;\\n' + //转换为光源坐标系,坐标区间[-1.0,1.0]转换为[0.0,1.0]
' vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\\n' +
' float depth = rgbaDepth.r;\\n' + //从R分量中获取深度值
' float visibility = (shadowCoord.z > depth + 0.005) ? 0.7 : 1.0;\\n' + //判断片元在平面上是否为阴影
' gl_FragColor = vec4(v_Color.rgb * visibility, v_Color.a);\\n' +
'}\\n';
2.2.3 马赫带消除
在绘制阴影的片元着色中,在做深度比较时,加了一个0.005的偏移量,之所以添加这个偏移量是为了消除马赫带,如去掉这个偏移量demo效果如下
之所以产生这种效果,是因为精度问题导致相同的值也会比较结果也会不同,详细说明一下:
- 纹理图像的RGBA的每个分量都是8位,假设存储的值是0.1234567,实际上是31个1/256,即0.12109375
- 计算的当前片元深度值是float类型,是16为,假设存储的值也是0.1234567,实际上是8090个1/65535,即0.12344360
这样即使相同深度也会得出不一样的结果,就会产生马赫带,为了避免产生马赫带,需要给纹理贴图的深度值添加一个偏移量,这个偏移量应略大于精度,这里0.005略大于1/256
3. demo代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title></title>
</head>
<body>
<!--通过canvas标签创建一个800px*800px大小的画布-->
<canvas id="webgl" width="800" height="800"></canvas>
<script type="text/javascript" src="./lib/cuon-matrix.js"></script>
<script>
var VSHADER_SOURCE =
'attribute vec4 a_Position;\\n' + //声明attribute变量a_Position,用来存放顶点位置信息
'attribute vec4 a_Color;\\n' + //声明attribute变量a_Color,用来存放顶点颜色
'uniform mat4 u_MvpMatrix;\\n' + //声明uniform变量u_MvpMatrix,用来存放模型视图投影组合矩阵
'uniform mat4 u_MvpMatrixFromLight;\\n' +
'varying vec4 v_PositionFromLight;\\n' +
'varying vec4 v_Color;\\n' +
'void main() {\\n' +
' gl_Position = u_MvpMatrix * a_Position;\\n' +
' v_PositionFromLight = u_MvpMatrixFromLight * a_Position;\\n' +
' v_Color = a_Color;\\n' +
'}\\n';
var FSHADER_SOURCE =
'#ifdef GL_ES\\n' +
'precision mediump float;\\n' +
'#endif\\n' +
'uniform sampler2D u_ShadowMap;\\n' + //声明uniform变量u_ShadowMap,存放纹理单元编号
'varying vec4 v_PositionFromLight;\\n' +
'varying vec4 v_Color;\\n' +
'void main() {\\n' +
' vec3 shadowCoord = (v_PositionFromLight.xyz/v_PositionFromLight.w)/2.0 + 0.5;\\n' +
//转换为光源坐标系,坐标区间[-1.0,1.0]转换为[0.0,1.0]
' vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\\n' +
' float depth = rgbaDepth.r;\\n' + //从R分量中获取深度值
' float visibility = (shadowCoord.z > depth + 0.005) ? 0.7 : 1.0;\\n' + //判断片元在平面上是否为阴影
' gl_FragColor = vec4(v_Color.rgb * visibility, v_Color.a);\\n' +
'}\\n';
var SHADOW_VSHADER_SOURCE =
'attribute vec4 a_Position;\\n' +
'uniform mat4 u_MvpMatrix;\\n' + //声明uniform变量u_MvpMatrix,存放以光源位置为视点位置的模型视图投影矩阵
'void main() {\\n' +
' gl_Position = u_MvpMatrix * a_Position;\\n' +
'}\\n';
//绘制阴影的片元着色器
var SHADOW_FSHADER_SOURCE =
'#ifdef GL_ES\\n' +
'precision mediump float;\\n' +
'#endif\\n' +
'void main() {\\n' +
' gl_FragColor = vec4(gl_FragCoord.z, 0.0, 0.0, 0.0);\\n' + //将片元深度值z写入RGBA颜色的R分量
'}\\n';
var OFFSCREEN_WIDTH = 2048
var OFFSCREEN_HEIGHT = 2048
//光源坐标
var LIGHT_X = 0,
LIGHT_Y = 7,
LIGHT_Z = 2;
//创建程序对象
function createProgram(gl, vshader, fshader) {
//创建顶点着色器对象
var vertexShader = loadShader(gl, gl.VERTEX_SHADER, vshader)
//创建片元着色器对象
var fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fshader)
if (!vertexShader || !fragmentShader) {
return null
}
//创建程序对象program
var program = gl.createProgram()
if (!gl.createProgram()) {
return null
}
//分配顶点着色器和片元着色器到program
gl.attachShader(program, vertexShader)
gl.attachShader(program, fragmentShader)
//链接program
gl.linkProgram(program)
//检查程序对象是否连接成功
var linked = gl.getProgramParameter(program, gl.LINK_STATUS)
if (!linked) {
var error = gl.getProgramInfoLog(program)
console.log('程序对象连接失败: ' + error)
gl.deleteProgram(program)
gl.deleteShader(fragmentShader)
gl.deleteShader(vertexShader)
return null
}
gl.program = program
//返回程序program对象
return program
}
function loadShader(gl, type, source) {
// 创建顶点着色器对象
var shader = gl.createShader(type)
if (shader == null) {
console.log('创建着色器失败')
return null
}
// 引入着色器源代码
gl.shaderSource(shader, source)
// 编译着色器
gl.compileShader(shader)
// 检查顶是否编译成功
var compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS)
if (!compiled) {
var error = gl.getShaderInfoLog(shader)
console.log('编译着色器失败: ' + error)
gl.deleteShader(shader)
return null
}
return shader
}
function init() {
//通过getElementById()方法获取canvas画布
var canvas = document.getElementById('webgl')
//通过方法getContext()获取WebGL上下文
var gl = canvas.getContext('webgl')
//获取绘制阴影贴图相关变量的存储地址
var shadowProgram = createProgram(gl, SHADOW_VSHADER_SOURCE, SHADOW_FSHADER_SOURCE);
shadowProgram.a_Position = gl.getAttribLocation(shadowProgram, 'a_Position');
shadowProgram.u_MvpMatrix = gl.getUniformLocation(shadowProgram, 'u_MvpMatrix');
if (shadowProgram.a_Position < 0 || !shadowProgram.u_MvpMatrix) {
console.log('获取attribute变量或uniform变量存储地址失败');
return;
}
//获取绘制阴影以外物体相关变量的存储地址
var normalProgram = createProgram(gl, VSHADER_SOURCE, FSHADER_SOURCE);
normalProgram.a_Position = gl.getAttribLocation(normalProgram, 'a_Position');
normalProgram.a_Color = gl.getAttribLocation(normalProgram, 'a_Color');
normalProgram.u_MvpMatrix = gl.getUniformLocation(normalProgram, 'u_MvpMatrix');
normalProgram.u_MvpMatrixFromLight = gl.getUniformLocation(normalProgram, 'u_MvpMatrixFromLight');
normalProgram.u_ShadowMap = gl.getUniformLocation(normalProgram, 'u_ShadowMap');
if (normalProgram.a_Position < 0 || normalProgram.a_Color < 0 || !normalProgram.u_MvpMatrix ||
!normalProgram.u_MvpMatrixFromLight || !normalProgram.u_ShadowMap) {
console.log('获取attribute变量或uniform变量存储地址失败');
return;
}
//初始化三角形顶点信息
var triangle = initVertexBuffersForTriangle(gl)
//初始化平面顶点信息
var plane = initVertexBuffersForPlane(gl)
if (!triangle || !plane) {
console.log('初始化顶点信息失败')
return
}
//初始化帧缓冲区对象(FBO)
var fbo = initFramebufferObject(gl)
if (!fbo) {
console.log('初始化帧缓冲区对象失败')
return
}
//激活0号纹理单元并绑定到纹理对象
gl.activeTexture(gl.TEXTURE0)
gl.bindTexture(gl.TEXTURE_2D, fbo.texture) //将帧缓冲区的颜色关联对象关联的纹理对象绑定到纹理单元
// 设置canvas的背景色
gl.clearColor(0, 0, 0, 1)
//开启隐藏面消除
gl.enable(gl.DEPTH_TEST)
//创建、设置视图投影矩阵
var viewProjMatrix = new Matrix4()
viewProjMatrix.setPerspective(45, 1, 1, 100)
viewProjMatrix.lookAt(0.0, 7.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
var viewProjMatrixFromLight = new Matrix4() //为阴影贴图创建视图投影矩阵
viewProjMatrixFromLight.setPerspective(70.0, OFFSCREEN_WIDTH / OFFSCREEN_HEIGHT, 1.0, 100.0)
viewProjMatrixFromLight.lookAt(LIGHT_X, LIGHT_Y, LIGHT_Z, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)
var mvpMatrixFromLight_t = new Matrix4(); //三角形的模型视图投影矩阵
var mvpMatrixFromLight_p = new Matrix4(); //底面的模型视图投影矩阵
var currentAngle = 0.0
var tick = function () {
currentAngle = getCurrentAngle(currentAngle) //获取当前要旋转的角度
gl.bindFramebuffer(gl.FRAMEBUFFER, fbo) //绑定帧缓冲区对象,后续绘制在绑定帧缓冲区中进行
gl.viewport(0, 0, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT) //设置在帧缓冲区绘制时窗口大小
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) //清空帧缓冲区
//启用绘制阴影的着色器程序对象
gl.useProgram(shadowProgram)
//准备阴影纹理,即将三角形和平面片元写入帧缓冲区的深度关联对象
drawTriangle(gl, shadowProgram, triangle, currentAngle, viewProjMatrixFromLight); //以光源位置为视点计算投影
mvpMatrixFromLight_t.set(g_mvpMatrix); //恢复绘制三角形的模型视图投影矩阵
drawPlane(gl, shadowProgram, plane, viewProjMatrixFromLight);
mvpMatrixFromLight_p.set(g_mvpMatrix); //恢复绘制平面的模型视图投影矩阵
gl.bindFramebuffer(gl.FRAMEBUFFER, null) //帧缓冲区对象解绑,解绑后绘制在默认的颜色缓冲区中进行
gl.viewport(0, 0, canvas.width, canvas.height) //设置在默认的颜色缓冲区绘制时窗口大小
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT) //清空颜色和深度缓冲区
//启用绘制三角形和平面的着色器程序对象
gl.useProgram(normalProgram);
gl.uniform1i(normalProgram.u_ShadowMap, 0); //传值纹理编号
//绘制三角形
gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, mvpMatrixFromLight_t.elements);
drawTriangle(gl, normalProgram, triangle, currentAngle, viewProjMatrix);
//绘制平面及平面上三角形的阴影
gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, mvpMatrixFromLight_p.elements);
drawPlane(gl, normalProgram, plane, viewProjMatrix)
requestAnimationFrame(tick)
}
tick() // 调用tick
}
var g_LastTime = Date.now() // 上次绘制的时间
var ANGLE_SET = 30.0 // 旋转速度(度/秒)
function getCurrentAngle(angle) {
var now = Date.now()
var elapsed = now - g_LastTime //上次调用与当前时间差
g_LastTime = now
var newAngle = angle + (ANGLE_SET * elapsed) / 1000
return newAngle %= 360
}
//初始化帧缓冲区(FBO)
function initFramebufferObject(gl) {
var framebuffer, texture, depthBuffer
//处理错误
var error = function () {
if (framebuffer) gl.deleteFramebuffer(framebuffer)
if (texture) gl.deleteTexture(texture)
if (depthBuffer) gl.deleteRenderbuffer(depthBuffer)
return null
}
//创建帧缓冲区
framebuffer = gl.createFramebuffer()
if (!framebuffer) {
console.log('创建帧缓冲区对象失败')
return error()
}
//创建纹理对象并设置参数
texture = gl.createTexture() //创建纹理对象
if (!texture) {
console.log('创建纹理对象失败')
return error()
}
gl.bindTexture(gl.TEXTURE_2D, texture) //绑定纹理对象
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT, 0, gl.RGBA, gl.UNSIGNED_BYTE,
null) //纹理图像分配给纹理对象
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR) //配置纹理对象参数
framebuffer.texture = texture //将纹理对象关联到帧缓冲区的颜色关联对象
//创建渲染缓冲区对象并设置参数
depthBuffer = gl.createRenderbuffer() //创建渲染缓冲区对象
if (!depthBuffer) {
console.log('创建渲染缓冲区对象失败')
return error()
}
gl.bindRenderbuffer(gl.RENDERBUFFER, depthBuffer) //绑定渲染缓冲区
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT) //设置渲染缓冲区尺寸
//将纹理对象和渲染缓冲区对象关联到帧缓冲区对象
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer) //绑定帧缓冲区对象
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0)
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, depthBuffer)
//检查帧缓冲区的配置状态
var e = gl.checkFramebufferStatus(glCSS实现表格阴影