电商产品评论数据情感分析

Posted Mint-L

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了电商产品评论数据情感分析相关的知识,希望对你有一定的参考价值。

1、评论去重的代码
import
pandas as pd import re import jieba.posseg as psg import numpy as np # 去重,去除完全重复的数据 reviews = pd.read_csv("./reviews.csv") reviews = reviews[[\'content\', \'content_type\']].drop_duplicates() content = reviews[\'content\']

  2、数据清洗、分词、词性标注、去除停用词代码

# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile(\'[0-9a-zA-Z]|京东|美的|电热水器|热水器|\')
content = content.apply(lambda x: strinfo.sub(\'\', x))
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker) 

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  #

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews[\'content_type\']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame("index_content":index_content, 
                       "word":word,
                       "nature":nature,
                       "content_type":content_type) 
# 删除标点符号
result = result[result[\'nature\'] != \'x\']  # x表示标点符号

# 删除停用词
stop_path = open("./stoplist.txt", \'r\',encoding=\'UTF-8\')
stop = stop_path.readlines()
stop = [x.replace(\'\\n\', \'\') for x in stop]
word = list(set(word) - set(stop))
result = result[result[\'word\'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = [\'index_content\'])[\'index_content\'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result[\'index_word\'] = index_word

  3、提取含有名词的评论

# 提取含有名词类的评论
ind = result[[\'n\' in x for x in result[\'nature\']]][\'index_content\'].unique()
result = result[[x in ind for x in result[\'index_content\']]]

  4、绘制词云

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = [\'word\'])[\'word\'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread(\'./pl.jpg\')
wordcloud = WordCloud(font_path="C:\\Windows\\Fonts\\STZHONGS.ttf",
                      max_words=100,
                      background_color=\'white\',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis(\'off\') 
plt.show()

# 将结果写出
result.to_csv("./word.csv", index = False, encoding = \'utf-8\')

5、 匹配情感词

import pandas as pd
import numpy as np
word = pd.read_csv("./word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv("./正面评价词语(中文).txt", header=None,sep="\\n", 
                          encoding = \'utf-8\', engine=\'python\')
neg_comment = pd.read_csv("./负面评价词语(中文).txt", header=None,sep="\\n", 
                          encoding = \'utf-8\', engine=\'python\')
pos_emotion = pd.read_csv("./正面情感词语(中文).txt", header=None,sep="\\n", 
                          encoding = \'utf-8\', engine=\'python\')
neg_emotion = pd.read_csv("./负面情感词语(中文).txt", header=None,sep="\\n", 
                          encoding = \'utf-8\', engine=\'python\') 

# 合并情感词与评价词
positive = set(pos_comment.iloc[:,0])|set(pos_emotion.iloc[:,0])
negative = set(neg_comment.iloc[:,0])|set(neg_emotion.iloc[:,0])
intersection = positive&negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame("word":positive,
                         "weight":[1]*len(positive))
negative = pd.DataFrame("word":negative,
                         "weight":[-1]*len(negative)) 

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on = \'word\', right_on = \'word\', 
                           how = \'right\')
data_posneg = data_posneg.sort_values(by = [\'index_content\',\'index_word\'])

6、修正情感倾向

# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv("./not.csv")

# 处理否定修饰词
data_posneg[\'amend_weight\'] = data_posneg[\'weight\']  # 构造新列,作为经过否定词修正后的情感值
data_posneg[\'id\'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination[\'id\']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg[\'index_content\'] == 
                         only_inclination[\'index_content\'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination[\'index_word\'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict[\'term\'] for i in review[\'word\'][affective - 1]])
        if ne == 1:
            data_posneg[\'amend_weight\'][index[i]] = -\\
            data_posneg[\'weight\'][index[i]]          
    elif affective > 1:
        ne = sum([i in notdict[\'term\'] for i in review[\'word\'][[affective - 1, 
                  affective - 2]]])
        if ne == 1:
            data_posneg[\'amend_weight\'][index[i]] = -\\
            data_posneg[\'weight\'][index[i]]
            
# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby([\'index_content\'],
                                           as_index=False)[\'amend_weight\'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value[\'amend_weight\'] != 0]

7、查看情感分析的结果

# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value[\'a_type\'] = \'\'
emotional_value[\'a_type\'][emotional_value[\'amend_weight\'] > 0] = \'pos\'
emotional_value[\'a_type\'][emotional_value[\'amend_weight\'] < 0] = \'neg\'

# 查看情感分析结果
result = emotional_value.merge(word, 
                               left_on = \'index_content\', 
                               right_on = \'index_content\',
                               how = \'left\')

result = result[[\'index_content\',\'content_type\', \'a_type\']].drop_duplicates() 
confusion_matrix = pd.crosstab(result[\'content_type\'], result[\'a_type\'], 
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0,0] + confusion_matrix.iat[1,1])/confusion_matrix.iat[2,2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value[\'a_type\'] == \'pos\'][\'index_content\'])
ind_neg = list(emotional_value[emotional_value[\'a_type\'] == \'neg\'][\'index_content\'])
posdata = word[[i in ind_pos for i in word[\'index_content\']]]
negdata = word[[i in ind_neg for i in word[\'index_content\']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 正面情感词词云
freq_pos = posdata.groupby(by = [\'word\'])[\'word\'].count()
freq_pos = freq_pos.sort_values(ascending = False)
backgroud_Image=plt.imread(\'./pl.jpg\')
wordcloud = WordCloud(font_path="C:\\Windows\\Fonts\\STZHONGS.ttf",
                      max_words=100,
                      background_color=\'white\',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.imshow(pos_wordcloud)
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'  # 设置中文显示
plt.axis(\'off\') 
plt.show()
# 负面情感词词云
freq_neg = negdata.groupby(by = [\'word\'])[\'word\'].count()
freq_neg = freq_neg.sort_values(ascending = False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.imshow(neg_wordcloud)
plt.rcParams[\'font.sans-serif\'] = \'SimHei\'  # 设置中文显示
plt.axis(\'off\') 
plt.show()

# 将结果写出,每条评论作为一行
posdata.to_csv("./posdata.csv", index = False, encoding = \'utf-8\')
negdata.to_csv("./negdata.csv", index = False, encoding = \'utf-8\')

 

 8、建立词典及语料库

import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv("./posdata.csv", encoding = \'utf-8\')
negdata = pd.read_csv("./negdata.csv", encoding = \'utf-8\')

from gensim import corpora, models
# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata[\'word\']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata[\'word\']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata[\'word\']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata[\'word\']]]   # 负面

  9、主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;  
    normA = 0.0;  
    normB = 0.0;  
    for a,b in zip(vector1, vector2): 
        dot_product += a*b  
        normA += a**2  
        normB += b**2  
    if normA == 0.0 or normB==0.0:  
        return(None)  
    else:  
        return(dot_product / ((normA*normB)**0.5))   

# 主题数寻优
def lda_k(x_corpus, x_dict):  
    
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)
    
    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)
            
        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([\'\'.join(re.findall(\'"(.*)"\',i)) \\
                             for i in term[k][1].split(\'+\')])  # 列出所有词
           
        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词   
        unique_word = set(word)  # 去除重复的词
        
        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))  
            
        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))
            
        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)
            
# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)        

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties  
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams[\'font.sans-serif\']=[\'SimHei\']
plt.rcParams[\'axes.unicode_minus\'] = False  
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel(\' \', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel(\' \', fontproperties=font)

 

10、LDA主题分析

# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)  
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)  
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)

 

python实现电商评论的情感分析

  现如今各种APP、微信订阅号、微博、购物网站等网站都允许用户发表一些个人看法、意见、态度、评价、立场等信息。针对这些数据,我们可以利用情感分析技术对其进行分析,总结出大量的有价值信息。例如对商品评论的分析,可以了解用户对商品的满意度,进而改进产品;通过对一个人分布内容的分析,了解他的情绪变化,哪种情绪多,哪种情绪少,进而分析他的性格。怎样知道哪些评论是正面的,哪些评论是负面的呢?正面评价的概率是多少呢?

  利用python的第三方模块SnowNLP可以实现对评论内容的情感分析预测,SnowNLP可以方便的处理中文文本内容,如中文分词、词性标注、情感分析、文本分类、提取文本关键词、文本相似度计算等。大概大于等于0.5,可以判断为正面评价——积极情感,小于0.5,可以判断为负面评价——消极情感。

  下面分析一组京东上某产品的评论数据并生成折线图:

部分源数据:

 

 实现过程:

#加载情感分析模块
from snownlp import SnowNLP
#from snownlp import sentiment
import pandas as pd
import matplotlib.pyplot as plt
#导入样例数据
aa =\'F:\\\\python入门\\\\python编程锦囊\\\\Code(实例源码及使用说明)\\\\Code(实例源码及使用说明)\\\\Code(实例源码及使用说明)\\\\09\\\\data\\\\京东评论.xls\'
#读取文本数据
df=pd.read_excel(aa)
#提取所有数据
df1=df.iloc[:,3]
print(\'将提取的数据打印出来:\\n\',df1)
#遍历每条评论进行预测
values=[SnowNLP(i).sentiments for i in df1]
#输出积极的概率,大于0.5积极的,小于0.5消极的
#myval保存预测值
myval=[]
good=0
bad=0
for i in values:
   if (i>=0.5):
       myval.append("正面")
       good=good+1
   else:
       myval.append("负面")
       bad=bad+1
df[\'预测值\']=values
df[\'评价类别\']=myval
#将结果输出到Excel
df.to_excel(\'F:\\\\python入门\\\\python编程锦囊\\\\Code(实例源码及使用说明)\\\\Code(实例源码及使用说明)\\\\Code(实例源码及使用说明)\\\\09\\\\data\\\\result2.xls\')
rate=good/(good+bad)
print(\'好评率\',\'%.f%%\' % (rate * 100)) #格式化为百分比
#作图
y=values
plt.rc(\'font\', family=\'SimHei\', size=10)
plt.plot(y, marker=\'o\', mec=\'r\', mfc=\'w\',label=u\'评价分值\')
plt.xlabel(\'用户\')
plt.ylabel(\'评价分值\')
# 让图例生效
plt.legend()
#添加标题
plt.title(\'京东评论情感分析\',family=\'SimHei\',size=14,color=\'blue\')
plt.show()

Excel结果:

 

 作图的结果:

 

 

 

以上是关于电商产品评论数据情感分析的主要内容,如果未能解决你的问题,请参考以下文章

电商产品评论数据情感分析

Python:电商产品评论数据情感分析,jieba分词,LDA模型

python实现电商评论的情感分析

学术观点| 拿“双十一”开涮的文本挖掘:电商评论情感分析

机器学习在电商文本挖掘中的应用浅析

基于LSTM的电商评论情感分析-TensorFlow2实现(内附源码)自然语言处理NLP-100例