官网下载地址
https://pypi.org/project/muggle-ocr/
pip install muggle_ocr
pip install muggle_ocr -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
案例1
导入包
import time
# 1. 导入包
import muggle_ocr
"""
使用预置模型,预置模型包含了[ModelType.OCR, ModelType.Captcha] 两种
其中 ModelType.OCR 用于识别普通印刷文本, ModelType.Captcha 用于识别4-6位简单英数验证码
"""
# 打开印刷文本图片
with open(r"test1.png", "rb") as f:
ocr_bytes = f.read()
# 打开验证码图片
with open(r"test2.jpg", "rb") as f:
captcha_bytes = f.read()
# 2. 初始化;model_type 可选: [ModelType.OCR, ModelType.Captcha]
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)
# ModelType.Captcha 可识别光学印刷文本
for i in range(5):
st = time.time()
# 3. 调用预测函数
text = sdk.predict(image_bytes=ocr_bytes)
print(text, time.time() - st)
# ModelType.Captcha 可识别4-6位验证码
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
for i in range(5):
st = time.time()
# 3. 调用预测函数
text = sdk.predict(image_bytes=captcha_bytes)
print(text, time.time() - st)
"""
使用自定义模型
支持基于 https://github.com/kerlomz/captcha_trainer 框架训练的模型
训练完成后,进入导出编译模型的[out]路径下, 把[graph]路径下的pb模型和[model]下的yaml配置文件放到同一路径下。
将 conf_path 参数指定为 yaml配置文件 的绝对或项目相对路径即可,其他步骤一致,如下示例:
"""
with open(r"test3.jpg", "rb") as f:
b = f.read()
sdk = muggle_ocr.SDK(conf_path="./ocr.yaml")
text = sdk.predict(image_bytes=b)
案例2
import time
import muggle_ocr
import os
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)
root_dir = r"./imgs"
for i in os.listdir(root_dir):
n = os.path.join(root_dir, i)
with open(n, "rb") as f:
b = f.read()
st = time.time()
text = sdk.predict(image_bytes=b)
print(i, text, time.time() - st)
案例3
import datetime
import time
import requests
import json
import base64
import muggle_ocr
import random
import warnings
warnings.filterwarnings("ignore")
def login_qufenqi():
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
# sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)
# num_str = \'\'.join(str(random.choice(range(10))) for _ in range(7))
# 获取图片
url = "https://passport.qufenqi.com/verify/getimg?r=0.05915737242270325"
headers = {
"authority": "passport.qufenqi.com",
"method": "GET",
"path": "/verify/getimg?r=0.05915737242270325",
"scheme": "https",
"accept": "image/webp,image/apng,image/*,*/*;q=0.8",
"accept-encoding": "gzip, deflate, br",
"accept-language": "zh-CN,zh;q=0.9,en;q=0.8",
"referer": "https://passport.qufenqi.com/i/resetloginpass",
"sec-fetch-dest": "image",
"sec-fetch-mode": "no-cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36",
}
response = requests.get(url, headers=headers, verify=False, timeout=10)
print("图片验证码",response.content)
with open(\'a.jpg\', \'wb\') as fw:
fw.write(response.content)
# 验证号码
code = sdk.predict(response.content)
print(code)
url = "https://passport.qufenqi.com/i/resetloginpass/setaccount"
headers = {
"authority":"passport.qufenqi.com",
"method":"POST",
"path":"/i/resetloginpass/setaccount",
"scheme":"https",
"accept":"*/*",
"accept-encoding":"gzip, deflate, br",
"accept-language":"zh-CN,zh;q=0.9,en;q=0.8",
"content-length":"31",
"content-type":"application/x-www-form-urlencoded; charset=UTF-8",
"origin":"https://passport.qufenqi.com",
"referer":"https://passport.qufenqi.com/i/resetloginpass",
"sec-fetch-dest":"empty",
"sec-fetch-mode":"cors",
"sec-fetch-site":"same-origin",
"user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36",
"x-requested-with":"XMLHttpRequest",
}
time.sleep(1)
data = {"mobile": "13918238777","imgcode": code} # input("输入验证码:")
print(data)
response = requests.post(url, headers=headers, data=data, verify=False, timeout=10)
print(json.loads(response.text))
if __name__ == \'__main__\':
# while True:
# time.sleep(1)
login_qufenqi()