LeetCode | 0700. Search in a Binary Search Tree二叉搜索树中的搜索Python

Posted Wonz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode | 0700. Search in a Binary Search Tree二叉搜索树中的搜索Python相关的知识,希望对你有一定的参考价值。

LeetCode 0700. Search in a Binary Search Tree二叉搜索树中的搜索【Easy】【Python】【二叉树】

Problem

LeetCode

Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node‘s value equals the given value. Return the subtree rooted with that node. If such node doesn‘t exist, you should return NULL.

For example,

Given the tree:
        4
       /       2   7
     /     1   3

And the value to search: 2

You should return this subtree:

      2     
     /    
    1   3

In the example above, if we want to search the value 5, since there is no node with value 5, we should return NULL.

Note that an empty tree is represented by NULL, therefore you would see the expected output (serialized tree format) as [], not null.

问题

力扣

给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

例如,

给定二叉搜索树:

    4
   /   2   7
 / 1   3

和值: 2
你应该返回如下子树:

  2     
 /    
1   3

在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。

思路

二叉树

Python3代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def searchBST(self, root: TreeNode, val: int) -> TreeNode:
        # 节点不存在
        if not root:
            return None
        if root.val == val:
            return root
        if root.val < val:
            return self.searchBST(root.right, val)
        if root.val > val:
            return self.searchBST(root.left, val)

GitHub链接

Python


以上是关于LeetCode | 0700. Search in a Binary Search Tree二叉搜索树中的搜索Python的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode 96. Unique Binary Search Trees

Leetcode 74 and 240. Search a 2D matrix I and II

[动态规划] leetcode 96 Unique Binary Search Trees

Leetcode:search_insert_position

leetcode-35 search-insert-position(搜索插入位置)

Leetcode 95. Unique Binary Search Tree II