动态物体追踪

Posted 九院不知名高手-猫吃耗子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态物体追踪相关的知识,希望对你有一定的参考价值。

动态物体追踪

闲话

我个人是比较喜欢捣鼓一些程序设计,算法之类的。但毕竟是人工智能专业的,电子类大赛也必须去打,起初是导师让我来打这个比赛,后面发现还是很有挑战,很有意思的。一开始我对全国大学生电子设计大赛真的一点不懂,之前也没了解过。后来听导师说,我们团队做的都是些控制类题,这我还算能接受。如果纯硬件,让我画电路,那我水平真的不太行。

我拿到的是2021年国赛题——基于互联网的摄像测量系统。要求(1)是做两个独立摄像头出来,我直接用树莓派连摄像头,这也很简单。之前我也给树莓派装了系统,并且在树莓派里面装了OpenCV,后面肯定会用到机器视觉。要求(2)就是我这篇要写到的,两个摄像节点要实时检测摆动的激光笔,然后把激光笔的轮廓检测到并框出。

我一开始觉得,这也太没难度了吧,我随便一个二值化处理,然后对比度框一下。可是我看题目看到后面的时候我发现事情没那么简单!说明(4)中有一句话:拍摄背景为一般实验室场景,背景物体静止即可,不得要求额外处理;如果实验室背景很嘈杂的话,我的激光笔不是比较难检测,我用二值化处理了一下,果然并没有把背景和激光笔区分出来,我后续一顿操作都没有好的结果,虽然能把笔检测出来,但是如果有和笔相似的像素也会被误判。

然后我尝试用内置函数轮廓检测直接去用drawCoutours()画出来轮廓,效果不太行,还是那句话,背景太杂了,检测的轮廓太多了,检测的结果不是单一的激光笔。如果背景是纯白的话,那确实没什么难度!可惜如果背景嘈杂的话,检测一个物体还要精准的框出来确实不是那么容易。

之后我尝试读取视频的第一帧,把笔的样子保存下来,然后去匹配笔,实现单目标匹配。效果虽然还行,但是不确定太大了,如果是在比赛,匹配的结果不是那么好,直接原地退役。毕竟后面要算激光笔的摆长和角度。在检测上面不能有误差。

后面我找到一种比较好的方法,就是两帧画面作差。因为激光笔是不断摆动的,背景都是静止的,那差出来的像素就是激光笔的像素,然后我去把它用findCountours()框起来!这个效果在本地实现起来是很好的。然后我就去码通信部分了,我就用socket写了个客户端和服务端。然后发现大问题了!因为用的是帧差法,如果通信有一点网络波动两帧差的比较多,那么框出来的框就特别的“大“。如果出现这种情况,那误差……如果在本地的话我觉得这种方法真的是最优了!不管再多嘈杂的环境都没什么影响,就算放一万支一模一样的激光笔,我也能检测出动的那一支。只是有点可惜通信的话,不能采用这个方法。

后面我问了下学长,学长说背景肯定要是白色的呀,我当时的心情……我辛苦那么久想去处理背景的问题,没想到比赛的时候背景肯定要是全白!

那我还是回归老方法,直接去用内置函数去检测轮廓,不过有几个小细节。框的时候,如果有面积太小或者太大的噪点,直接给它Pass掉。还有就是检测的轮廓如果长宽比不是像笔那样的比例,也Pass掉。这样误差几乎降为0。

匹配法(效果差)

代码给我删掉了,不贴出来了

帧差法(本机效果好)

import cv2
def fitter_img(frame):
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转成灰度图像
    blur = cv2.GaussianBlur(gray, (5, 5), 0) # 高斯模糊
    t, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) # 二值化
    dilated = cv2.dilate(thresh, None, iterations=3) # 膨胀
    return dilated

cap = cv2.VideoCapture(0)
ret, frame1 = cap.read()
ret, frame2 = cap.read()
while cap.isOpened():
    diff = cv2.absdiff(frame1,frame2)
    mask = fitter_img(diff)
    # 寻找轮廓
    contours, her = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    for i in contours:
        x, y, w, h = cv2.boundingRect(i)
        if cv2.contourArea(i) < 200:
            continue
        cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv2.imshow("diff", diff)
    cv2.imshow("frame1", frame1)
    # cv2.imshow("mask", mask)
    # 前面一帧转成后面一帧
    frame1 = frame2
    ret, frame2 = cap.read()
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break
cap.release()
cv2.destroyAllWindows()

直接检测轮廓

这段代码我直接写在socket的服务端的,我直接贴出来。

import socket
import time
import cv2
import numpy

def ReceiveVideo():
    # IP地址\'0.0.0.0\'为等待客户端连接
    address = (\'0.0.0.0\', 8002)
    # 建立socket对象,参数意义见https://blog.csdn.net/rebelqsp/article/details/22109925
    # socket.AF_INET:服务器之间网络通信
    # socket.SOCK_STREAM:流式socket , for TCP
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    # 将套接字绑定到地址, 在AF_INET下,以元组(host,port)的形式表示地址.
    s.bind(address)
    # 开始监听TCP传入连接。参数指定在拒绝连接之前,操作系统可以挂起的最大连接数量。该值至少为1,大部分应用程序设为5就可以了。
    s.listen(1)

    def recvall(sock, count):
        buf = b\'\'  # buf是一个byte类型
        while count:
            # 接受TCP套接字的数据。数据以字符串形式返回,count指定要接收的最大数据量.
            newbuf = sock.recv(count)
            if not newbuf: return None
            buf += newbuf
            count -= len(newbuf)
        return buf

    # 接受TCP连接并返回(conn,address),其中conn是新的套接字对象,可以用来接收和发送数据。addr是连接客户端的地址。
    # 没有连接则等待有连接
    conn, addr = s.accept()
    print(\'connect from:\' + str(addr))
    while 1:
        start = time.time()  # 用于计算帧率信息
        length = recvall(conn, 16)  # 获得图片文件的长度,16代表获取长度
        stringData = recvall(conn, int(length))  # 根据获得的文件长度,获取图片文件
        data = numpy.frombuffer(stringData, numpy.uint8)  # 将获取到的字符流数据转换成1维数组
        decimg = cv2.imdecode(data, cv2.IMREAD_COLOR)  # 将数组解码成图像
        # cv2.imshow(\'SERVER\', decimg)  # 显示图像
        img = decimg

        # 进行下一步处理
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
        coutours, h = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        for i in coutours:
            # 排除掉面积过大或过小的区域
            if cv2.contourArea(i) < 1000 or cv2.contourArea(i) > 5000:
                continue
            x, y, w, h = cv2.boundingRect(i)
            # 排除不正确的面积比
            if h < 2 * w or h > 8 * w: continue

            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
        cv2.imshow("img", img)

        # 将帧率信息回传,主要目的是测试可以双向通信
        end = time.time()
        seconds = end - start
        fps = 1 / seconds;
        conn.send(bytes(str(int(fps)), encoding=\'utf-8\'))
        k = cv2.waitKey(30) & 0xff
        if k == ord(\'q\'):
            break
    s.close()
    cv2.destroyAllWindows()


if __name__ == \'__main__\':
    ReceiveVideo()

客户端代码

上面有服务端的代码,怎么能少了客户端的呢?

import socket
import cv2
import numpy
import time
import sys


def SendVideo():
    # 建立sock连接
    # address要连接的服务器IP地址和端口号
    address = (\'192.168.31.110\', 8002)
    try:
        # 建立socket对象,参数意义见https://blog.csdn.net/rebelqsp/article/details/22109925
        # socket.AF_INET:服务器之间网络通信
        # socket.SOCK_STREAM:流式socket , for TCP
        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        # 开启连接
        sock.connect(address)
    except socket.error as msg:
        print(msg)
        sys.exit(1)

    # 建立图像读取对象
    capture = cv2.VideoCapture(0)
    # 读取一帧图像,读取成功:ret=1 frame=读取到的一帧图像;读取失败:ret=0
    ret, frame = capture.read()
    # 压缩参数,后面cv2.imencode将会用到,对于jpeg来说,15代表图像质量,越高代表图像质量越好为 0-100,默认95
    encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 15]

    while ret:
        # 停止0.1S 防止发送过快服务的处理不过来,如果服务端的处理很多,那么应该加大这个值
        time.sleep(0.01)
        # cv2.imencode将图片格式转换(编码)成流数据,赋值到内存缓存中;主要用于图像数据格式的压缩,方便网络传输
        # \'.jpg\'表示将图片按照jpg格式编码。
        result, imgencode = cv2.imencode(\'.jpg\', frame, encode_param)
        # 建立矩阵
        data = numpy.array(imgencode)
        # 将numpy矩阵转换成字符形式,以便在网络中传输
        stringData = data.tostring()

        # 先发送要发送的数据的长度
        # ljust() 方法返回一个原字符串左对齐,并使用空格填充至指定长度的新字符串
        sock.send(str.encode(str(len(stringData)).ljust(16)));
        # 发送数据
        sock.send(stringData);
        # 读取服务器返回值
        receive = sock.recv(1024)
        if len(receive): print(str(receive, encoding=\'utf-8\'))
        # 读取下一帧图片
        ret, frame = capture.read()
        if cv2.waitKey(10) == 27:
            break
    sock.close()

if __name__ == \'__main__\':
    SendVideo()

总结

其实我当时想这个背景问题,想了很久,用了10几种方法吧,但是其他的方法简直太不科学了!还是老老实实用库函数吧!不过我真的是喜欢帧差法,效果真的很棒!可惜通信太拉了!

效果图

物体追踪实战:使用 OpenCV实现对指定颜色的物体追踪

本文实现对特定颜色的物体追踪,我实验用的是绿萝的树叶。

新建脚本ball_tracking.py,加入代码:

import argparse
from collections import deque
import cv2
import numpy as np

导入必要的包,然后定义一些函数

def grab_contours(cnts):
    # 如果 cv2.findContours 返回的轮廓元组的长度为“2”,那么我们使用的是 OpenCV v2.4、v4-beta 或 v4-official
    if len(cnts) == 2:
        cnts = cnts[0]
    # 如果轮廓元组的长度为“3”,那么我们使用的是 OpenCV v3、v4-pre 或 v4-alpha
    elif len(cnts) == 3:
        cnts = cnts[1]
    else:
        raise Exception(("Contours tuple must have length 2 or 3, "
            "otherwise OpenCV changed their cv2.findContours return "
            "signature yet again. Refer to OpenCV's documentation "
            "in that case"))
    return cnts
def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    dim = None
    (h, w) = image.shape[:2]
    # 如果高和宽为None则直接返回
    if width is None and height is None:
        return image
    # 检查宽是否是None
    if width is None:
        # 计算高度的比例并并按照比例计算宽度
        r = height / float(h)
        dim = (int(w * r), height)
    # 高为None
    else:
        # 计算宽度比例,并计算高度
        r = width / float(w)
        dim = (width, int(h * r))
    resized = cv2.resize(image, dim, interpolation=inter)
    # return the resized image
    return resized

grab_contours 对于opencv不同版本做了兼容处理。

resize等比例改变图片的大小。

 命令行参数
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to video")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
args = vars(ap.parse_args())
# 绿色树叶的HSV色域空间范围
greenLower = (29, 86, 6)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
vs = cv2.VideoCapture(0)
fps = 30    #保存视频的FPS,可以适当调整
size=(600,450)
fourcc=cv2.VideoWriter_fourcc(*'XVID')
videowrite=cv2.VideoWriter('output.avi',fourcc,fps,size)

定义参数

–video :视频文件的路径或者摄像头的id

–buffer 是 deque 的最大大小,它维护我们正在跟踪的球的先前 (x, y) 坐标列表。 这个双端队列允许我们绘制球的“轨迹”,详细说明它过去的位置。 较小的队列将导致较短的尾部,而较大的队列将产生较长的尾部

定义hsv空间的上限和下限

启动摄像头0

最后是保存定义VideoWriter对象,实现对视频的写入功能

while True:
    ret_val, frame = vs.read()
    if ret_val is False:
        break
    frame = resize(frame, width=600)
    # 通过高斯滤波去除掉一些高频噪声,使得重要的数据更加突出
    blurred = cv2.GaussianBlur(frame, (11, 11), 0)
    # 将图片转为HSV
    hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
    # inRange的作用是根据阈值进行二值化:阈值内的像素设置为白色(255),阈值外的设置为黑色(0)
    mask = cv2.inRange(hsv, greenLower, greenUpper)
    # 腐蚀(erode)和膨胀(dilate)的作用:
    # 1. 消除噪声;
    # 2. 分割(isolate)独立的图像元素,以及连接(join)相邻的元素;
    # 3. 寻找图像中的明显的极大值区域或极小值区域
    mask = cv2.erode(mask, None, iterations=2)
    mask = cv2.dilate(mask, None, iterations=2)
   

开启一个循环,该循环将一直持续到 (1) 我们按下 q 键,表明我们要终止脚本或 (2) 我们的视频文件到达终点并用完帧。

读取一帧,返回两个参数,第一个参数是否成功,第二个参数是一帧图像。

如果失败则break。

对图像进行了一些预处理。首先,我们将框架的大小调整为 600 像素的宽度。缩小帧使我们能够更快地处理帧,从而提高 FPS(因为我们要处理的图像数据更少)。然后我们将模糊框架以减少高频噪声,并使我们能够专注于框架内的结构物体,例如球。最后,我们将帧转换为 HSV 颜色空间。

通过调用 cv2.inRange 处理帧中绿球的实际定位。首先为绿色提供下 HSV 颜色边界,然后是上 HSV 边界。 cv2.inRange 的输出是一个二进制掩码,

 # 寻找轮廓,不同opencv的版本cv2.findContours返回格式有区别,所以调用了一下imutils.grab_contours做了一些兼容性处理
    cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = grab_contours(cnts)
    center = None
    # only proceed if at least one contour was found
    if len(cnts) > 0:
        # find the largest contour in the mask, then use it to compute the minimum enclosing circle
        # and centroid
        c = max(cnts, key=cv2.contourArea)
        ((x, y), radius) = cv2.minEnclosingCircle(c)
        M = cv2.moments(c)
        # 对于01二值化的图像,m00即为轮廓的面积, 一下公式用于计算中心距
        center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
        # only proceed if the radius meets a minimum size
        if radius > 10:
            # draw the circle and centroid on the frame, then update the list of tracked points
            cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2)
            cv2.circle(frame, center, 5, (0, 0, 255), -1)

        pts.appendleft(center)

    for i in range(1, len(pts)):
        # if either of the tracked points are None, ignore them
        if pts[i - 1] is None or pts[i] is None:
            continue

        # compute the thickness of the line and draw the connecting line
        thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
        cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)

    cv2.imshow("Frame", frame)
    videowrite.write(frame)
    key = cv2.waitKey(1) & 0xFF

    if key == ord("q"):
        break
videowrite.release()
vs.release()
cv2.destroyAllWindows()

计算图像中对象的轮廓。在接下来的行中,将球的中心 (x, y) 坐标初始化为 None。

检查以确保在掩码中至少找到一个轮廓。假设至少找到一个轮廓,找到 cnts 列表中最大的轮廓,计算 blob 的最小包围圆,然后计算中心 (x, y) 坐标(即“质心”)。

快速检查以确保最小包围圆的半径足够大。如果半径通过测试,我们然后画两个圆圈:一个围绕球本身,另一个表示球的质心。

然后,将质心附加到 pts 列表中。

循环遍历每个 pts。如果当前点或前一个点为 None(表示在该给定帧中没有成功检测到球),那么我们忽略当前索引继续循环遍历 pts。

如果两个点都有效,我们计算轨迹的厚度,然后将其绘制在框架上。

运行结果:

以上是关于动态物体追踪的主要内容,如果未能解决你的问题,请参考以下文章

惊!Python能够检测动态的物体颜色!

物体追踪实战:使用 OpenCV实现对指定颜色的物体追踪

3D渲染-光线追踪-包围盒

OpenCV-Python视频分析(移动物体检测,物体追踪)

图像处理openCV光流法追踪运动物体

Python3 Opencv 帧差法 运动物体的追踪