机器学习库sklearn
官方documentation(资料)中分为不同的部分:
其中我们主要讲User Guide(机器学习算法理论介绍)、API(程序实现方法):
一、User Guide
https://scikit-learn.org/stable/user_guide.html
二、api
和前面的内容对应,这个内容里给了在sklearn里的实现方法。
模块 |
功能 |
sklearn.base module: Base classes and utility functions sklearn.calibration module: Probability Calibration(标准、标定) sklearn.cluster: Clustering sklearn.cluster.bicluster: Biclustering sklearn.compose: Composite Estimators sklearn.covariance: Covariance Estimators(协方差) sklearn.cross_decomposition: Cross decomposition(交叉分解) sklearn.datasets: Datasets sklearn.decomposition: Matrix Decomposition sklearn.discriminant_analysis: Discriminant Analysis(判别分析) sklearn.dummy: Dummy estimators sklearn.ensemble: Ensemble Methods sklearn.exceptions module(exceptions模块): Exceptions and warnings sklearn.experimental: Experimental sklearn.feature_extraction: Feature Extraction sklearn.feature_selection: Feature Selection sklearn.gaussian_process: Gaussian Processes sklearn.isotonic: Isotonic regression sklearn.impute: Impute sklearn.kernel_approximation Kernel Approximation sklearn.kernel_ridge Kernel Ridge Regression sklearn.linear_model: Generalized Linear Models? sklearn.manifold: Manifold Learning sklearn.metrics: Metrics sklearn.mixture: Gaussian Mixture Models sklearn.model_selection: Model Selection sklearn.multiclass: Multiclass and multilabel classification sklearn.multioutput: Multioutput regression and classification sklearn.naive_bayes: Naive Bayes sklearn.neighbors: Nearest Neighbors sklearn.neural_network: Neural network models sklearn.pipeline: Pipeline sklearn.inspection: inspection sklearn.preprocessing: Preprocessing and Normalization sklearn.random_projection: Random projection? sklearn.random_projection: Random projection? sklearn.svm: Support Vector Machines? sklearn.tree: Decision Trees? sklearn.utils: Utilities(实用程序)
|
|