大数据与Hadoop之间是啥关系
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据与Hadoop之间是啥关系相关的知识,希望对你有一定的参考价值。
大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
大数据技术的三个重点:Hadoop、spark、storm。Hadoop本身就是大数据平台研发人员的工作成果,Hadoop是目前常见的大数据支撑性平台,Hadoop平台提供了分布式存储(HDFS)、分布式计算(MapReduce)、任务调度(YARN)、对象存储(Ozone)和组件支撑服务(Common)。
参考技术A Hadoop,Spark和Storm是目前最重要的三大分布式计算系统,Hadoop常用于离线的复杂的大数据处理,Spark常用于离线的快速的大数据处理,而Storm常用于在线的实时的大数据处理。简单说,Hadoop或者说Hadoop生态圈,是为了解决大数据应用场景而出现的,它包含了文件系统、计算框架、调度系统等,Spark是Hadoop生态圈里的一种分布式计算引擎。 参考技术B Hadoop中有很多方法可以加入多个数据集。MapReduce提供了Map端和Reduce端的数据连接。这些连接是非平凡的连接,并且可能会是非常昂贵的操作。Pig和Hive也具有同等的能力来申请连接到多个数据集。Pig提供了复制连接,合并连接和倾斜连接(skewed join),并且Hive提供了map端的连接和完整外部连接来分析数据。
一个重要的事实是,通过使用各种工具,比如MapReduce、Pig和Hive等,数据可以基于它们的内置功能和实际需求来使用它们。至于在Hadoop分析大量数据,Anoop指出,通常,在大数据/Hadoop的世界,一些问题可能并不复杂,并且解决方案也是直截了当的,但面临的挑战是数据量。在这种情况下需要不同的解决办法来解决问题。
一些分析任务是从日志文件中统计明确的ID的数目、在特定的日期范围内改造存储的数据、以及网友排名等。所有这些任务都可以通过Hadoop中的多种工具和技术如MapReduce、Hive、Pig、Giraph和Mahout等来解决。这些工具在自定义例程的帮助下可以灵活地扩展它们的能力。 参考技术C 因为当数据非常巨大时,如 XXX TB 甚至 XXX PB, 区区一台服务器就很难处理过来了。
所以就需要使用 N 台服务器,组成一个群集,共同处理庞大的数据,这样就能极大提升效率了。
Hadoop其实就是一个分布式的文件系统,数据会分布到 N 台服务器中,一旦需要处理数据,则 N 台服务器共同进行处理,再把各个中间结果汇总成最后的结果。
当然,这需要特别的算法,不能再使用传统的算法了,这就要使用 MapReduce 框架了。
我们万能的淘宝就是使用了 hadoop 的,你想想上年双十一那 一千亿交易额,其中累积起来的数据可是很惊人的。本回答被提问者采纳 参考技术D 大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
Hadoop是一个由Apache基金会所开发的分布式系统基础架构,是用Java语言开发的一个开源分布式计算平台,适合大数据的分布式存储和计算平台。
Hadoop是目前被广泛使用的大数据平台,本身就是大数据平台研发人员的工作成果,Hadoop是目前比较常见的大数据支撑性平台,Hadoop平台提供了分布式存储(HDFS)、分布式计算(MapReduce)、任务调度(YARN)、对象存储(Ozone)和组件支撑服务(Common)。
随着Hadoop的不断发展,基于Hadoop的大数据生态越发完善,目前包括Ambari、Avro、Cassandra、Chukwa、HBase、Hive、Mahout、Pig、Spark、Tez、Zookeeper等组件陆续被开发出来,这些组件极大的丰富了Hadoop自身的应用。加米谷大数据培训,6月大数据开发零基础班、提高班,成都小班面授,预报名中!随着组件的增多,Hadoop自身也越来越重,因此目前很多大数据工程师更愿意使用Spark,因为Spark更轻,基于内存速度也更快。
可以这样简单地理解:
1、大数据是一个高层次的概念(相当于互联网的概念),而Hadoop只是承载大数据的一个平台框架一种实现方式而已(类似于各种物理电脑网络)。
2、大数据包含的内涵广泛得多,而Hadoop只是其中一部分实现。
我们平常所说的大数据包含:采集、传输、存储、分析、可视化等等;而Hadoop更多是用于提取、存储、分析的一个系统平台而已。
3、实现大数据平台的框架除了Hadoop之外,还有其他更多的平台。
由于Hadoop是一个开源的大数据系统平台,所以你们听得最多。除了Hadoop平台外,还有其他系统平台。
所以,大数据不等于Hadoop,大数据与Hadoop也不是包含关系。
大数据开发人员可以通过Hadoop提供的系统级服务支持从而帮助企业完成大数据改造,对于开发人员来说,只需要关注于具体的服务实现就可以了,系统级功能已经由Hadoop提供了实现。所以,Hadoop是大数据开发人员的重要基础。
大数据(hadoop,hive,hbase,spark,flume等)各技术间的关系
大数据由一系列技术组成,那他们之间的关系是怎么组成的ne,请看下图:
hadoop主要做了文件存储系统和提供了一个相对比较弱的mr处理数据的方案
hive是在mr和文件存储系统上面做的升级。
sprak+hbase+hadoop主要解决的是hadoop实时处理数据比较弱的问题
以上是关于大数据与Hadoop之间是啥关系的主要内容,如果未能解决你的问题,请参考以下文章