使用Python读写Kafka

Posted White_ql

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Python读写Kafka相关的知识,希望对你有一定的参考价值。

本篇会给出如何使用python来读写kafka, 包含生产者和消费者.

以下使用kafka-python客户端

生产者

爬虫大多时候作为消息的发送端, 在消息发出去后最好能记录消息被发送到了哪个分区, offset是多少, 这些记录在很多情况下可以帮助快速定位问题, 所以需要在send方法后加入callback函数, 包括成功和失败的处理

# -*- coding: utf-8 -*-

\'\'\'
callback也是保证分区有序的, 比如2条消息, a先发送, b后发送, 对于同一个分区, 那么会先回调a的callback, 再回调b的callback
\'\'\'

import json
from kafka import KafkaProducer

topic = \'demo\'


def on_send_success(record_metadata):
    print(record_metadata.topic)
    print(record_metadata.partition)
    print(record_metadata.offset)


def on_send_error(excp):
    print(\'I am an errback: {}\'.format(excp))


def main():
    producer = KafkaProducer(
        bootstrap_servers=\'localhost:9092\'
    )
    producer.send(topic, value=b\'{"test_msg":"hello world"}\').add_callback(on_send_success).add_callback(
        on_send_error)
    # close() 方法会阻塞等待之前所有的发送请求完成后再关闭 KafkaProducer
    producer.close()


def main2():
    \'\'\'
    发送json格式消息
    :return:
    \'\'\'
    producer = KafkaProducer(
        bootstrap_servers=\'localhost:9092\',
        value_serializer=lambda m: json.dumps(m).encode(\'utf-8\')
    )
    producer.send(topic, value={"test_msg": "hello world"}).add_callback(on_send_success).add_callback(
        on_send_error)
    # close() 方法会阻塞等待之前所有的发送请求完成后再关闭 KafkaProducer
    producer.close()


if __name__ == \'__main__\':
    # main()
    main2()

消费者

kafka的消费模型比较复杂, 我会分以下几种情况来进行说明

1.不使用消费组(group_id=None)

不使用消费组的情况下可以启动很多个消费者, 不再受限于分区数, 即使消费者数量 > 分区数, 每个消费者也都可以收到消息

# -*- coding: utf-8 -*-

\'\'\'
消费者: group_id=None
\'\'\'

from kafka import KafkaConsumer

topic = \'demo\'


def main():
    consumer = KafkaConsumer(
        topic,
        bootstrap_servers=\'localhost:9092\',
        auto_offset_reset=\'latest\',
        # auto_offset_reset=\'earliest\',
    )
    for msg in consumer:
        print(msg)
        print(msg.value)

    consumer.close()


if __name__ == \'__main__\':
    main()

2.指定消费组

以下使用pool方法来拉取消息

  • pool 每次拉取只能拉取一个分区的消息, 比如有2个分区1个consumer, 那么会拉取2次
  • pool 是如果有消息马上进行拉取, 如果timeout_ms内没有新消息则返回空dict, 所以可能出现某次拉取了1条消息, 某次拉取了max_records条
# -*- coding: utf-8 -*-

\'\'\'
消费者: 指定group_id
\'\'\'

from kafka import KafkaConsumer

topic = \'demo\'
group_id = \'test_id\'


def main():
    consumer = KafkaConsumer(
        topic,
        bootstrap_servers=\'localhost:9092\',
        auto_offset_reset=\'latest\',
        group_id=group_id,

    )
    while True:
        try:
            # return a dict
            batch_msgs = consumer.poll(timeout_ms=1000, max_records=2)
            if not batch_msgs:
                continue
            \'\'\'
            {TopicPartition(topic=\'demo\', partition=0): [ConsumerRecord(topic=\'demo\', partition=0, offset=42, timestamp=1576425111411, timestamp_type=0, key=None, value=b\'74\', headers=[], checksum=None, serialized_key_size=-1, serialized_value_size=2, serialized_header_size=-1)]}
            \'\'\'
            for tp, msgs in batch_msgs.items():
                print(\'topic: {}, partition: {} receive length: \'.format(tp.topic, tp.partition, len(msgs)))
                for msg in msgs:
                    print(msg.value)
        except KeyboardInterrupt:
            break

    consumer.close()


if __name__ == \'__main__\':
    main()

关于消费组

我们根据配置参数分为以下几种情况

  • group_id=None
    • auto_offset_reset=\'latest\': 每次启动都会从最新出开始消费, 重启后会丢失重启过程中的数据
    • auto_offset_reset=\'latest\': 每次从最新的开始消费, 不会管哪些任务还没有消费
  • 指定group_id
    • 全新group_id
      • auto_offset_reset=\'latest\': 只消费启动后的收到的数据, 重启后会从上次提交offset的地方开始消费
      • auto_offset_reset=\'earliest\': 从最开始消费全量数据
    • 旧group_id(即kafka集群中还保留着该group_id的提交记录)
      • auto_offset_reset=\'latest\': 从上次提交offset的地方开始消费
      • auto_offset_reset=\'earliest\': 从上次提交offset的地方开始消费

性能测试

以下是在本地进行的测试, 如果要在线上使用kakfa, 建议提前进行性能测试

  • producer
# -*- coding: utf-8 -*-

\'\'\'
producer performance

environment:
    mac
    python3.7
    broker 1
    partition 2
\'\'\'

import json
import time
from kafka import KafkaProducer

topic = \'demo\'
nums = 1000000


def main():
    producer = KafkaProducer(
        bootstrap_servers=\'localhost:9092\',
        value_serializer=lambda m: json.dumps(m).encode(\'utf-8\')
    )
    st = time.time()
    cnt = 0
    for _ in range(nums):
        producer.send(topic, value=_)
        cnt += 1
        if cnt % 10000 == 0:
            print(cnt)

    producer.flush()

    et = time.time()
    cost_time = et - st
    print(\'send nums: {}, cost time: {}, rate: {}/s\'.format(nums, cost_time, nums // cost_time))


if __name__ == \'__main__\':
    main()

\'\'\'
send nums: 1000000, cost time: 61.89236712455749, rate: 16157.0/s
send nums: 1000000, cost time: 61.29534196853638, rate: 16314.0/s
\'\'\'

  • consumer
# -*- coding: utf-8 -*-

\'\'\'
consumer performance
\'\'\'

import time
from kafka import KafkaConsumer

topic = \'demo\'
group_id = \'test_id\'


def main1():
    nums = 0
    st = time.time()

    consumer = KafkaConsumer(
        topic,
        bootstrap_servers=\'localhost:9092\',
        auto_offset_reset=\'latest\',
        group_id=group_id
    )
    for msg in consumer:
        nums += 1
        if nums >= 500000:
            break
    consumer.close()

    et = time.time()
    cost_time = et - st
    print(\'one_by_one: consume nums: {}, cost time: {}, rate: {}/s\'.format(nums, cost_time, nums // cost_time))


def main2():
    nums = 0
    st = time.time()

    consumer = KafkaConsumer(
        topic,
        bootstrap_servers=\'localhost:9092\',
        auto_offset_reset=\'latest\',
        group_id=group_id
    )
    running = True
    batch_pool_nums = 1
    while running:
        batch_msgs = consumer.poll(timeout_ms=1000, max_records=batch_pool_nums)
        if not batch_msgs:
            continue
        for tp, msgs in batch_msgs.items():
            nums += len(msgs)
            if nums >= 500000:
                running = False
                break

    consumer.close()

    et = time.time()
    cost_time = et - st
    print(\'batch_pool: max_records: {} consume nums: {}, cost time: {}, rate: {}/s\'.format(batch_pool_nums, nums,
                                                                                           cost_time,
                                                                                           nums // cost_time))


if __name__ == \'__main__\':
    # main1()
    main2()

\'\'\'
one_by_one: consume nums: 500000, cost time: 8.018627166748047, rate: 62354.0/s
one_by_one: consume nums: 500000, cost time: 7.698841094970703, rate: 64944.0/s


batch_pool: max_records: 1 consume nums: 500000, cost time: 17.975456953048706, rate: 27815.0/s
batch_pool: max_records: 1 consume nums: 500000, cost time: 16.711708784103394, rate: 29919.0/s

batch_pool: max_records: 500 consume nums: 500369, cost time: 6.654940843582153, rate: 75187.0/s
batch_pool: max_records: 500 consume nums: 500183, cost time: 6.854053258895874, rate: 72976.0/s

batch_pool: max_records: 1000 consume nums: 500485, cost time: 6.504687070846558, rate: 76942.0/s
batch_pool: max_records: 1000 consume nums: 500775, cost time: 7.047331809997559, rate: 71058.0/s
\'\'\'


该公众号是我个人维护的, 初衷是可以适当备份自己的笔记, 之后想可能会帮到更多的人. 发文时间不固定, 尽可能每篇文章直奔主题, 不去占用大家宝贵的时间. 如觉得对你有用, 欢迎关注交流.

以上是关于使用Python读写Kafka的主要内容,如果未能解决你的问题,请参考以下文章

为什么Kafka不支持读写分离

干货|为什么Kafka不支持读写分离

Kafka为什么不支持读写分离得原因?-干货

kafka如何做到磁盘读写比内存读写还快?

Flink读写Kafka

MySQL系列:kafka停止命令