python算法之查找
Posted xhw19950606
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python算法之查找相关的知识,希望对你有一定的参考价值。
#顺序查找
#基本思想:从第一个元素到最后一个元素依次查找
def sqsearch(numList, x):
for id,num in enumerate(numList):
if num == x:
return id
return str(x) + ‘ is not exist!‘
print(sqsearch([1,2,4,5,6,8,12,24,32,44], 5))
#二分查找(折半查找)
#基本思想:将n个数组成的有序数列分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,
# 如果x=a[n/2]则找到x,算法终止;如果x<a[n/2],则只要在数组a的左半部继续搜索x;
# 如果x>a[n/2],则只要在数组a的右半部继续搜索x
def binarysearch(numList, x):
low = 0
high = len(numList) - 1
while low <= high:
mid = (low + high) / 2
if x == numList[mid]:
return mid
if x > numList[mid]:
low =mid + 1
if x < numList[mid]:
high = mid - 1
return str(x) + " is not exist!"
print(binarysearch([1,2,4,5,6,8,12,24,32,44], 5))
#插入查找(按比例查找)
#基本思想:属于二分查找的改进方法,不同之处是将折半的取法变为按比例
def insertsearch(numList, x):
low = 0
high = len(numList) - 1
while low <= high:
mid = low + (x-numList[low])/(numList[high]-numList[low])*(high-low)#插入查找公式
if x == numList[mid]:
return mid
if x > numList[mid]:
low = mid + 1
if x < numList[mid]:
high = mid - 1
return str(x) + " is not exist!"
print(insertsearch([1, 2, 4, 5, 6, 8, 12, 24, 32, 44], 5))
#斐波那契查找(黄金比例查找)
#基本思想:属于二分查找的改进方法,不同之处是将折半的取法变为0.618:1的取法(以列表的元素个数用斐波那契数列来近似)
def fib(x):
if x==1 or x==2:
return 1
else:
return fib(x-1) + fib(x-2)
def find(key):
x=1
fibnum = []
while fib(x)<key:
fibnum.append(fib(x))
x +=1
fibnum.append(fib(x))
return fibnum
def fibsearch(numList, x):
org=orgleng = len(numList)
#若原始列表长度不足斐波那契数,则用列表最后一个数补,直到长度等于斐波那契数(注:只需要补1次就行)
fibnum = find(orgleng)
while orgleng < fibnum[-1]:
numList.append(numList[-1])
orgleng += 1
k = len(fibnum)
low = 0
high = len(numList) - 1
while low <= high:
mid = low + fib(k-1)-1#按照斐波那契数列取值划分
print(str(numList[low:mid]) + ‘ ‘ + str(numList[mid:high+1]))
if x > numList[mid]:
low = mid + 1
k -= 2 #当x处于后半段时
elif x < numList[mid]:
high = mid - 1
k -= 1 #当x处于前半段时
else:
#若mid小于原始列表最大索引,则返回;若mid大于原始列表最大索引,则返回原始列表最大索引
if mid < org:
return mid
else:
return org - 1
return str(x) + " is not exist!"
print(fibsearch([1, 2, 4, 5, 6, 8, 12, 24, 32, 44],2))
# [1, 2, 4, 5, 6, 8, 12] [24, 32, 44, 44, 44, 44]
# [1, 2, 4, 5] [6, 8, 12]
# [1, 2] [4, 5]
# [1] [2]
以上是关于python算法之查找的主要内容,如果未能解决你的问题,请参考以下文章