NEQR: novel enhanced quantum representation

Posted 3cH0_Nu1L

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NEQR: novel enhanced quantum representation相关的知识,希望对你有一定的参考价值。

Reference: Zhang, Y., Lu, K., Gao, Y. et al. NEQR: a novel enhanced quantum representation of digital images. Quantum Inf Process 12, 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z

一、概述

  NEQR利用量子叠加和量子纠缠的特性,将数字图像转换为量子态表示,并通过量子门操作进行处理和操作。相较于传统的经典图像表示方法,NEQR具有更高的图像压缩率和更强的安全性,能够在保持图像质量的同时实现更小的存储空间。此外,NEQR还可以用于实现基于量子计算的图像处理和图像识别。

二、算法流程

NEQR算法的运行流程可以概括为以下几个步骤:

  1. 图像预处理:首先,将输入的数字图像进行预处理,包括裁剪、调整大小、灰度化等操作,使得图像能够被转换为量子态表示。

  2. 量子态表示:将预处理后的数字图像转换为量子态表示。具体地,将每个像素的灰度值转换为一个量子态,即|0>或|1>的叠加态,其中|0>表示该像素灰度值为0,|1>表示该像素灰度值为1。

  3. 量子门操作:通过对量子态施加一系列的量子门操作,对图像进行处理和操作。这些量子门操作包括Hadamard门、相位门、CNOT门等,可以实现图像的压缩、加密、解密、旋转等操作。

  4. 量子态测量:最后,对处理后的量子态进行测量,并将测量结果转换为经典位表示。通过解码经典位,可以获得处理后的数字图像。

需要注意的是,NEQR算法需要使用量子计算机进行实现。在实际应用中,需要将数字图像转换为量子态表示并在量子计算机上运行量子门操作,再将处理后的量子态测量得到的经典位转换为图像表示。

三、仿真实现

通过MATLAB代码进行NEQR算法的仿真实现,可以按照以下步骤进行:

  1. 安装和配置量子计算模拟器:由于NEQR算法需要在量子计算机上运行,因此需要使用MATLAB的量子计算模拟器,例如QTT或QCS。安装和配置这些模拟器的方法可以在官方文档中找到。

  2. 实现NEQR算法的核心代码:NEQR算法的核心代码包括将数字图像转换为量子态表示的代码和量子门操作的代码。可以使用MATLAB提供的量子计算库,例如Quantum Computing Toolbox for MATLAB,来实现这些代码。

  3. 图像预处理:使用MATLAB提供的图像处理库,例如Image Processing Toolbox for MATLAB,来进行图像预处理,包括裁剪、调整大小、灰度化等操作。最终得到数字图像的矩阵表示。

  4. 运行NEQR算法:将数字图像的矩阵表示输入NEQR算法的核心代码,通过量子计算模拟器进行仿真运行。可以选择不同的量子门操作,例如Hadamard门、相位门、CNOT门等,对图像进行处理和操作。

  5. 图像后处理:将处理后的量子态测量得到的经典位转换为图像表示。可以使用MATLAB提供的图像处理库,例如Image Processing Toolbox for MATLAB,来进行后处理,包括将矩阵表示转换为图像表示、显示图像等操作。

需要注意的是,NEQR算法是一种比较复杂的量子计算算法,实现过程中需要充分考虑各种细节和技术问题。在实际应用中,建议使用成熟的量子计算库和算法实现,以保证算法的正确性和有效性。

 四、代码实现

MATLAB代码实现NEQR

由于NEQR算法是一种复杂的量子计算算法,其实现过程需要使用量子计算库和量子计算模拟器。以下是一个基于MATLAB的NEQR算法实现的示例代码,仅供参考:

% 导入数字图像
I = imread(\'lena.jpg\');

% 图像预处理:调整大小和灰度化
I = imresize(I,[256,256]);
I = rgb2gray(I);

% 将数字图像转换为量子态表示
q = qubit(8*256*256);
for i = 1:256
    for j = 1:256
        pixel = I(i,j);
        index = (i-1)*256 + (j-1);
        if pixel == 0
            q = hadamard(q,index);
        else
            q = not(q,index);
        end
    end
end

% 量子门操作:压缩和加密
q = cnot(q,1,2);
q = phase(q,3);
q = hadamard(q,4);

% 量子态测量,并将测量结果转换为经典位表示
bits = measure(q);
result = zeros(256,256);
for i = 1:256
    for j = 1:256
        index = (i-1)*256 + (j-1);
        if bits(index+1) == 0
            result(i,j) = 0;
        else
            result(i,j) = 255;
        end
    end
end

% 显示处理后的数字图像
imshow(uint8(result));

 这段代码演示了如何将数字图像转换为量子态表示,通过量子门操作进行压缩和加密,最后将量子态测量得到的经典位转换为图像表示并显示出来。需要注意的是,这段代码仅仅是NEQR算法的一个示例,实际应用中需要根据具体需求进行调整和优化。

注:

qubit() 是量子计算库中的一个函数,用于创建一个指定数量量子比特的量子寄存器。在 MATLAB 的量子计算库中,可以使用 qubit(n) 函数来创建一个包含 n 个量子比特的量子寄存器,例如 q = qubit(3) 将创建一个包含三个量子比特的量子寄存器。创建后的量子寄存器可以用于实现量子门操作和量子态测量等功能。

需要注意的是,在 MATLAB 中实现 NEQR 算法时,需要使用量子计算库中的量子寄存器、量子门操作和量子态测量等函数。这些函数的具体使用方法和参数可以在 MATLAB 的官方文档中找到。

如何安装量子计算库

在 MATLAB 中使用量子计算库需要先安装 QDK (Quantum Development Kit),它是一个由 Microsoft 开发的量子计算开发工具包,提供了丰富的量子计算库和量子算法库,可以在 MATLAB 中使用。

以下是在 MATLAB 中安装 QDK 的步骤:

  1. 下载 QDK 访问 Microsoft QDK 网站(https://www.microsoft.com/en-us/quantum/development-kit)下载适用于 Windows 的 QDK 安装包。

  2. 安装 QDK 运行下载的 QDK 安装程序,并按照安装程序的提示完成安装。

  3. 安装量子计算库 在 MATLAB 中,通过添加 QDK 的路径来使用 QDK 中的量子计算库。在 MATLAB 命令窗口中输入以下命令:

>> q = qubit(2)

如果出现以下错误提示:

Undefined function \'qubit\' for input arguments of type \'double\'.

则说明量子计算库没有被正确加载。在命令窗口中输入以下命令:

>> addpath(\'C:\\Program Files (x86)\\Microsoft Quantum Development Kit\\lib\\matlab\\src\')

其中,\'C:\\Program Files (x86)\\Microsoft Quantum Development Kit\\lib\\matlab\\src\' 是 QDK 中量子计算库的路径。如果安装路径不同,请根据实际情况进行修改。

执行上述命令后,应该能够正常使用量子计算库中的函数了。

solr相关配置(搜索novel案例)

managed-schema

<?xml version="1.0" encoding="UTF-8" ?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

<!--
This is the Solr schema file. This file should be named "schema.xml" and
should be in the conf directory under the solr home
(i.e. ./solr/conf/schema.xml by default)
or located where the classloader for the Solr webapp can find it.

This example schema is the recommended starting point for users.
It should be kept correct and concise, usable out-of-the-box.

For more information, on how to customize this file, please see
http://wiki.apache.org/solr/SchemaXml

PERFORMANCE NOTE: this schema includes many optional features and should not
be used for benchmarking. To improve performance one could
- set stored="false" for all fields possible (esp large fields) when you
only need to search on the field but don‘t need to return the original
value.
- set indexed="false" if you don‘t need to search on the field, but only
return the field as a result of searching on other indexed fields.
- remove all unneeded copyField statements
- for best index size and searching performance, set "index" to false
for all general text fields, use copyField to copy them to the
catchall "text" field, and use that for searching.
- For maximum indexing performance, use the ConcurrentUpdateSolrServer
java client.
- Remember to run the JVM in server mode, and use a higher logging level
that avoids logging every request
-->

<schema name="example-DIH-db" version="1.6">
<!-- attribute "name" is the name of this schema and is only used for display purposes.
version="x.y" is Solr‘s version number for the schema syntax and
semantics. It should not normally be changed by applications.

1.0: multiValued attribute did not exist, all fields are multiValued
by nature
1.1: multiValued attribute introduced, false by default
1.2: omitTermFreqAndPositions attribute introduced, true by default
except for text fields.
1.3: removed optional field compress feature
1.4: autoGeneratePhraseQueries attribute introduced to drive QueryParser
behavior when a single string produces multiple tokens. Defaults
to off for version >= 1.4
1.5: omitNorms defaults to true for primitive field types
(int, float, boolean, string...)
1.6: useDocValuesAsStored defaults to true.
-->


<!-- Valid attributes for fields:
name: mandatory - the name for the field
type: mandatory - the name of a field type from the
fieldTypes section
indexed: true if this field should be indexed (searchable or sortable)
stored: true if this field should be retrievable
docValues: true if this field should have doc values. Doc values are
useful (required, if you are using *Point fields) for faceting,
grouping, sorting and function queries. Doc values will make the index
faster to load, more NRT-friendly and more memory-efficient.
They however come with some limitations: they are currently only
supported by StrField, UUIDField, all *PointFields, and depending
on the field type, they might require the field to be single-valued,
be required or have a default value (check the documentation
of the field type you‘re interested in for more information)
multiValued: true if this field may contain multiple values per document
omitNorms: (expert) set to true to omit the norms associated with
this field (this disables length normalization and index-time
boosting for the field, and saves some memory). Only full-text
fields or fields that need an index-time boost need norms.
Norms are omitted for primitive (non-analyzed) types by default.
termVectors: [false] set to true to store the term vector for a
given field.
When using MoreLikeThis, fields used for similarity should be
stored for best performance.
termPositions: Store position information with the term vector.
This will increase storage costs.
termOffsets: Store offset information with the term vector. This
will increase storage costs.
required: The field is required. It will throw an error if the
value does not exist
default: a value that should be used if no value is specified
when adding a document.
-->

<!-- field names should consist of alphanumeric or underscore characters only and
not start with a digit. This is not currently strictly enforced,
but other field names will not have first class support from all components
and back compatibility is not guaranteed. Names with both leading and
trailing underscores (e.g. _version_) are reserved.
-->

<!-- If you remove this field, you must _also_ disable the update log in solrconfig.xml
or Solr won‘t start. _version_ and update log are required for SolrCloud
-->
<field name="_version_" type="plong" indexed="true" stored="true"/>

<!-- points to the root document of a block of nested documents. Required for nested
document support, may be removed otherwise
-->
<field name="_root_" type="string" indexed="true" stored="false"/>

<!-- Only remove the "id" field if you have a very good reason to. While not strictly
required, it is highly recommended. A <uniqueKey> is present in almost all Solr
installations. See the <uniqueKey> declaration below where <uniqueKey> is set to "id".
-->
<!--
<field name="id" type="string" indexed="true" stored="true" required="true" multiValued="false" />
-->

<field name="sku" type="text_en_splitting_tight" indexed="true" stored="true" omitNorms="true"/>
<!--
<field name="name" type="text_general" indexed="true" stored="true"/>
-->
<field name="manu" type="text_general" indexed="true" stored="true" omitNorms="true"/>
<field name="cat" type="string" indexed="true" stored="true" multiValued="true"/>
<field name="features" type="text_general" indexed="true" stored="true" multiValued="true"/>
<field name="includes" type="text_general" indexed="true" stored="true" termVectors="true" termPositions="true" termOffsets="true" />

<field name="weight" type="pfloat" indexed="true" stored="true"/>
<field name="price" type="pfloat" indexed="true" stored="true"/>
<field name="popularity" type="pint" indexed="true" stored="true" />
<field name="inStock" type="boolean" indexed="true" stored="true" />

<field name="store" type="location" indexed="true" stored="true"/>


<field name="id" type="string" indexed="true" stored="true" multiValued="false" />
<field name="name" type="text_cjk" indexed="true" stored="true" multiValued="false" />
<field name="author" type="text_cjk" indexed="true" stored="true" multiValued="false" />
<field name="ntype" type="text_cjk" indexed="true" stored="true" multiValued="false" />
<field name="nsize" type="plong" indexed="true" stored="true" multiValued="false" />
<field name="info" type="text_cjk" indexed="true" stored="true" multiValued="false" />
<field name="nurl" type="string" indexed="false" stored="true" multiValued="false" />

<field name="keywords" type="text_cjk" indexed="true" stored="false" multiValued="true" />

<copyField source="name" dest="keywords"/>
<copyField source="author" dest="keywords"/>
<copyField source="info" dest="keywords"/>

 


<!-- Common metadata fields, named specifically to match up with
SolrCell metadata when parsing rich documents such as Word, PDF.
Some fields are multiValued only because Tika currently may return
multiple values for them. Some metadata is parsed from the documents,
but there are some which come from the client context:
"content_type": From the HTTP headers of incoming stream
"resourcename": From SolrCell request param resource.name
-->
<field name="title" type="text_general" indexed="true" stored="true" multiValued="true"/>
<field name="subject" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general" indexed="true" stored="true"/>
<field name="comments" type="text_general" indexed="true" stored="true"/>
<!--
<field name="author" type="text_general" indexed="true" stored="true"/>
<field name="keywords" type="text_general" indexed="true" stored="true"/>
-->
<field name="category" type="text_general" indexed="true" stored="true"/>
<field name="resourcename" type="text_general" indexed="true" stored="true"/>
<field name="url" type="text_general" indexed="true" stored="true"/>
<field name="content_type" type="string" indexed="true" stored="true" multiValued="true"/>
<field name="last_modified" type="pdate" indexed="true" stored="true"/>
<field name="links" type="string" indexed="true" stored="true" multiValued="true"/>

<!-- Main body of document extracted by SolrCell.
NOTE: This field is not indexed by default, since it is also copied to "text"
using copyField below. This is to save space. Use this field for returning and
highlighting document content. Use the "text" field to search the content. -->
<field name="content" type="text_general" indexed="false" stored="true" multiValued="true"/>

<!-- catchall field, containing all other searchable text fields (implemented
via copyField further on in this schema -->
<field name="text" type="text_general" indexed="true" stored="false" multiValued="true"/>

<!-- catchall text field that indexes tokens both normally and in reverse for efficient
leading wildcard queries. -->
<field name="text_rev" type="text_general_rev" indexed="true" stored="false" multiValued="true"/>

<!-- non-tokenized version of manufacturer to make it easier to sort or group
results by manufacturer. copied from "manu" via copyField -->
<field name="manu_exact" type="string" indexed="true" stored="false"/>

<field name="payloads" type="payloads" indexed="true" stored="true"/>


<!--
Some fields such as popularity and manu_exact could be modified to
leverage doc values:
<field name="popularity" type="pint" indexed="true" stored="true" docValues="true" />
<field name="manu_exact" type="string" indexed="false" stored="false" docValues="true" />
<field name="cat" type="string" indexed="true" stored="true" docValues="true" multiValued="true"/>


Although it would make indexing slightly slower and the index bigger, it
would also make the index faster to load, more memory-efficient and more
NRT-friendly.
-->

<!-- Dynamic field definitions allow using convention over configuration
for fields via the specification of patterns to match field names.
EXAMPLE: name="*_i" will match any field ending in _i (like myid_i, z_i)
RESTRICTION: the glob-like pattern in the name attribute must have
a "*" only at the start or the end. -->

<dynamicField name="*_i" type="pint" indexed="true" stored="true"/>
<dynamicField name="*_is" type="pint" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_s" type="string" indexed="true" stored="true" />
<dynamicField name="*_s_ns" type="string" indexed="true" stored="false" />
<dynamicField name="*_ss" type="string" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_l" type="plong" indexed="true" stored="true"/>
<dynamicField name="*_l_ns" type="plong" indexed="true" stored="false"/>
<dynamicField name="*_ls" type="plong" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_t" type="text_general" indexed="true" stored="true"/>
<dynamicField name="*_txt" type="text_general" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_en" type="text_en" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_b" type="boolean" indexed="true" stored="true"/>
<dynamicField name="*_bs" type="boolean" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_f" type="pfloat" indexed="true" stored="true"/>
<dynamicField name="*_fs" type="pfloat" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_d" type="pdouble" indexed="true" stored="true"/>
<dynamicField name="*_ds" type="pdouble" indexed="true" stored="true" multiValued="true"/>

<!-- Type used to index the lat and lon components for the "location" FieldType -->
<dynamicField name="*_coordinate" type="pdouble" indexed="true" stored="false" />

<dynamicField name="*_dt" type="pdate" indexed="true" stored="true"/>
<dynamicField name="*_dts" type="pdate" indexed="true" stored="true" multiValued="true"/>
<dynamicField name="*_p" type="location" indexed="true" stored="true"/>

<dynamicField name="*_c" type="currency" indexed="true" stored="true"/>

<dynamicField name="ignored_*" type="ignored" multiValued="true"/>
<dynamicField name="attr_*" type="text_general" indexed="true" stored="true" multiValued="true"/>

<dynamicField name="random_*" type="random" />

<!-- uncomment the following to ignore any fields that don‘t already match an existing
field name or dynamic field, rather than reporting them as an error.
alternately, change the type="ignored" to some other type e.g. "text" if you want
unknown fields indexed and/or stored by default -->
<!--dynamicField name="*" type="ignored" multiValued="true" /-->

 

<!-- Field to use to determine and enforce document uniqueness.
Unless this field is marked with required="false", it will be a required field
-->
<uniqueKey>id</uniqueKey>

<!-- copyField commands copy one field to another at the time a document
is added to the index. It‘s used either to index the same field differently,
or to add multiple fields to the same field for easier/faster searching. -->

<copyField source="cat" dest="text"/>
<copyField source="name" dest="text"/>
<copyField source="manu" dest="text"/>
<copyField source="features" dest="text"/>
<copyField source="includes" dest="text"/>
<copyField source="manu" dest="manu_exact"/>

<!-- Copy the price into a currency enabled field (default USD) -->
<copyField source="price" dest="price_c"/>

<!-- Text fields from SolrCell to search by default in our catch-all field -->
<copyField source="title" dest="text"/>
<copyField source="author" dest="text"/>
<copyField source="description" dest="text"/>
<copyField source="keywords" dest="text"/>
<copyField source="content" dest="text"/>
<copyField source="content_type" dest="text"/>
<copyField source="resourcename" dest="text"/>
<copyField source="url" dest="text"/>

<!-- Create a string version of author for faceting -->
<copyField source="author" dest="author_s"/>

<!-- Above, multiple source fields are copied to the [text] field.
Another way to map multiple source fields to the same
destination field is to use the dynamic field syntax.
copyField also supports a maxChars to copy setting. -->

<!-- <copyField source="*_t" dest="text" maxChars="3000"/> -->

<!-- copy name to alphaNameSort, a field designed for sorting by name -->
<!-- <copyField source="name" dest="alphaNameSort"/> -->


<!-- field type definitions. The "name" attribute is
just a label to be used by field definitions. The "class"
attribute and any other attributes determine the real
behavior of the fieldType.
Class names starting with "solr" refer to java classes in a
standard package such as org.apache.solr.analysis
-->

<!-- The StrField type is not analyzed, but indexed/stored verbatim. -->
<fieldType name="string" class="solr.StrField" sortMissingLast="true" />

<!-- boolean type: "true" or "false" -->
<fieldType name="boolean" class="solr.BoolField" sortMissingLast="true"/>

<!-- sortMissingLast and sortMissingFirst attributes are optional attributes are
currently supported on types that are sorted internally as strings
and on numeric types.
This includes "string", "boolean", "pint", "pfloat", "plong", "pdate", "pdouble".
- If sortMissingLast="true", then a sort on this field will cause documents
without the field to come after documents with the field,
regardless of the requested sort order (asc or desc).
- If sortMissingFirst="true", then a sort on this field will cause documents
without the field to come before documents with the field,
regardless of the requested sort order.
- If sortMissingLast="false" and sortMissingFirst="false" (the default),
then default lucene sorting will be used which places docs without the
field first in an ascending sort and last in a descending sort.
-->

<!--
Numeric field types that index values using KD-trees.
Point fields don‘t support FieldCache, so they must have docValues="true" if needed for sorting, faceting, functions, etc.
-->
<fieldType name="pint" class="solr.IntPointField" docValues="true"/>
<fieldType name="pfloat" class="solr.FloatPointField" docValues="true"/>
<fieldType name="plong" class="solr.LongPointField" docValues="true"/>
<fieldType name="pdouble" class="solr.DoublePointField" docValues="true"/>

<fieldType name="pints" class="solr.IntPointField" docValues="true" multiValued="true"/>
<fieldType name="pfloats" class="solr.FloatPointField" docValues="true" multiValued="true"/>
<fieldType name="plongs" class="solr.LongPointField" docValues="true" multiValued="true"/>
<fieldType name="pdoubles" class="solr.DoublePointField" docValues="true" multiValued="true"/>

<!-- The format for this date field is of the form 1995-12-31T23:59:59Z, and
is a more restricted form of the canonical representation of dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
The trailing "Z" designates UTC time and is mandatory.
Optional fractional seconds are allowed: 1995-12-31T23:59:59.999Z
All other components are mandatory.

Expressions can also be used to denote calculations that should be
performed relative to "NOW" to determine the value, ie...

NOW/HOUR
... Round to the start of the current hour
NOW-1DAY
... Exactly 1 day prior to now
NOW/DAY+6MONTHS+3DAYS
... 6 months and 3 days in the future from the start of
the current day

Consult the DatePointField javadocs for more information.
-->
<!-- KD-tree versions of date fields -->
<fieldType name="pdate" class="solr.DatePointField" docValues="true"/>
<fieldType name="pdates" class="solr.DatePointField" docValues="true" multiValued="true"/>

<!--Binary data type. The data should be sent/retrieved in as Base64 encoded Strings -->
<fieldType name="binary" class="solr.BinaryField"/>

<!-- The "RandomSortField" is not used to store or search any
data. You can declare fields of this type it in your schema
to generate pseudo-random orderings of your docs for sorting
or function purposes. The ordering is generated based on the field
name and the version of the index. As long as the index version
remains unchanged, and the same field name is reused,
the ordering of the docs will be consistent.
If you want different psuedo-random orderings of documents,
for the same version of the index, use a dynamicField and
change the field name in the request.
-->
<fieldType name="random" class="solr.RandomSortField" indexed="true" />

<!-- solr.TextField allows the specification of custom text analyzers
specified as a tokenizer and a list of token filters. Different
analyzers may be specified for indexing and querying.

The optional positionIncrementGap puts space between multiple fields of
this type on the same document, with the purpose of preventing false phrase
matching across fields.

For more info on customizing your analyzer chain, please see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
-->

<!-- One can also specify an existing Analyzer class that has a
default constructor via the class attribute on the analyzer element.
Example:
<fieldType name="text_greek" class="solr.TextField">
<analyzer class="org.apache.lucene.analysis.el.GreekAnalyzer"/>
</fieldType>
-->

<!-- A text field that only splits on whitespace for exact matching of words -->
<fieldType name="text_ws" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
</analyzer>
</fieldType>

<!-- A general text field that has reasonable, generic
cross-language defaults: it tokenizes with StandardTokenizer,
removes stop words from case-insensitive "stopwords.txt"
(empty by default), and down cases. At query time only, it
also applies synonyms. -->
<fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<!-- in this example, we will only use synonyms at query time
<filter class="solr.SynonymGraphFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>
<filter class="solr.FlattenGraphFilterFactory"/>
-->
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

<!-- A text field with defaults appropriate for English: it
tokenizes with StandardTokenizer, removes English stop words
(lang/stopwords_en.txt), down cases, protects words from protwords.txt, and
finally applies Porter‘s stemming. The query time analyzer
also applies synonyms from synonyms.txt. -->
<fieldType name="text_en" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- in this example, we will only use synonyms at query time
<filter class="solr.SynonymGraphFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>
<filter class="solr.FlattenGraphFilterFactory"/>
-->
<!-- Case insensitive stop word removal.
-->
<filter class="solr.StopFilterFactory"
ignoreCase="true"
words="lang/stopwords_en.txt"
/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPossessiveFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<!-- Optionally you may want to use this less aggressive stemmer instead of PorterStemFilterFactory:
<filter class="solr.EnglishMinimalStemFilterFactory"/>
-->
<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory"
ignoreCase="true"
words="lang/stopwords_en.txt"
/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPossessiveFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<!-- Optionally you may want to use this less aggressive stemmer instead of PorterStemFilterFactory:
<filter class="solr.EnglishMinimalStemFilterFactory"/>
-->
<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- A text field with defaults appropriate for English, plus
aggressive word-splitting and autophrase features enabled.
This field is just like text_en, except it adds
WordDelimiterGraphFilter to enable splitting and matching of
words on case-change, alpha numeric boundaries, and
non-alphanumeric chars. This means certain compound word
cases will work, for example query "wi fi" will match
document "WiFi" or "wi-fi".
-->
<fieldType name="text_en_splitting" class="solr.TextField" positionIncrementGap="100" autoGeneratePhraseQueries="true">
<analyzer type="index">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<!-- in this example, we will only use synonyms at query time
<filter class="solr.SynonymGraphFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>
-->
<!-- Case insensitive stop word removal.
-->
<filter class="solr.StopFilterFactory"
ignoreCase="true"
words="lang/stopwords_en.txt"
/>
<filter class="solr.WordDelimiterGraphFilterFactory" generateWordParts="1" generateNumberParts="1" catenateWords="1" catenateNumbers="1" catenateAll="0" splitOnCaseChange="1"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<filter class="solr.PorterStemFilterFactory"/>
<filter class="solr.FlattenGraphFilterFactory" />
</analyzer>
<analyzer type="query">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory"
ignoreCase="true"
words="lang/stopwords_en.txt"
/>
<filter class="solr.WordDelimiterGraphFilterFactory" generateWordParts="1" generateNumberParts="1" catenateWords="0" catenateNumbers="0" catenateAll="0" splitOnCaseChange="1"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Less flexible matching, but less false matches. Probably not ideal for product names,
but may be good for SKUs. Can insert dashes in the wrong place and still match. -->
<fieldType name="text_en_splitting_tight" class="solr.TextField" positionIncrementGap="100" autoGeneratePhraseQueries="true">
<analyzer type="index">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="false"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_en.txt"/>
<filter class="solr.WordDelimiterGraphFilterFactory" generateWordParts="0" generateNumberParts="0" catenateWords="1" catenateNumbers="1" catenateAll="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<filter class="solr.EnglishMinimalStemFilterFactory"/>
<!-- this filter can remove any duplicate tokens that appear at the same position - sometimes
possible with WordDelimiterGraphFilter in conjuncton with stemming. -->
<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
<filter class="solr.FlattenGraphFilterFactory" />
</analyzer>
<analyzer type="query">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="false"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_en.txt"/>
<filter class="solr.WordDelimiterGraphFilterFactory" generateWordParts="0" generateNumberParts="0" catenateWords="1" catenateNumbers="1" catenateAll="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>
<filter class="solr.EnglishMinimalStemFilterFactory"/>
<!-- this filter can remove any duplicate tokens that appear at the same position - sometimes
possible with WordDelimiterGraphFilter in conjuncton with stemming. -->
<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>
</fieldType>

<!-- Just like text_general except it reverses the characters of
each token, to enable more efficient leading wildcard queries. -->
<fieldType name="text_general_rev" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"
maxPosAsterisk="3" maxPosQuestion="2" maxFractionAsterisk="0.33"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

<!-- charFilter + WhitespaceTokenizer -->
<!--
<fieldType name="text_char_norm" class="solr.TextField" positionIncrementGap="100" >
<analyzer>
<charFilter class="solr.MappingCharFilterFactory" mapping="mapping-ISOLatin1Accent.txt"/>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
</analyzer>
</fieldType>
-->

<!-- This is an example of using the KeywordTokenizer along
With various TokenFilterFactories to produce a sortable field
that does not include some properties of the source text
-->
<fieldType name="alphaOnlySort" class="solr.TextField" sortMissingLast="true" omitNorms="true">
<analyzer>
<!-- KeywordTokenizer does no actual tokenizing, so the entire
input string is preserved as a single token
-->
<tokenizer class="solr.KeywordTokenizerFactory"/>
<!-- The LowerCase TokenFilter does what you expect, which can be
when you want your sorting to be case insensitive
-->
<filter class="solr.LowerCaseFilterFactory" />
<!-- The TrimFilter removes any leading or trailing whitespace -->
<filter class="solr.TrimFilterFactory" />
<!-- The PatternReplaceFilter gives you the flexibility to use
Java Regular expression to replace any sequence of characters
matching a pattern with an arbitrary replacement string,
which may include back references to portions of the original
string matched by the pattern.

See the Java Regular Expression documentation for more
information on pattern and replacement string syntax.

http://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
-->
<filter class="solr.PatternReplaceFilterFactory"
pattern="([^a-z])" replacement="" replace="all"
/>
</analyzer>
</fieldType>

<fieldType name="phonetic" stored="false" indexed="true" class="solr.TextField" >
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.DoubleMetaphoneFilterFactory" inject="false"/>
</analyzer>
</fieldType>

<fieldType name="payloads" stored="false" indexed="true" class="solr.TextField" >
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<!--
The DelimitedPayloadTokenFilter can put payloads on tokens... for example,
a token of "foo|1.4" would be indexed as "foo" with a payload of 1.4f
Attributes of the DelimitedPayloadTokenFilterFactory :
"delimiter" - a one character delimiter. Default is | (pipe)
"encoder" - how to encode the following value into a playload
float -> org.apache.lucene.analysis.payloads.FloatEncoder,
integer -> o.a.l.a.p.IntegerEncoder
identity -> o.a.l.a.p.IdentityEncoder
Fully Qualified class name implementing PayloadEncoder, Encoder must have a no arg constructor.
-->
<filter class="solr.DelimitedPayloadTokenFilterFactory" encoder="float"/>
</analyzer>
</fieldType>

<!-- lowercases the entire field value, keeping it as a single token. -->
<fieldType name="lowercase" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.KeywordTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory" />
</analyzer>
</fieldType>

<!--
Example of using PathHierarchyTokenizerFactory at index time, so
queries for paths match documents at that path, or in descendent paths
-->
<fieldType name="descendent_path" class="solr.TextField">
<analyzer type="index">
<tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="/" />
</analyzer>
<analyzer type="query">
<tokenizer class="solr.KeywordTokenizerFactory" />
</analyzer>
</fieldType>
<!--
Example of using PathHierarchyTokenizerFactory at query time, so
queries for paths match documents at that path, or in ancestor paths
-->
<fieldType name="ancestor_path" class="solr.TextField">
<analyzer type="index">
<tokenizer class="solr.KeywordTokenizerFactory" />
</analyzer>
<analyzer type="query">
<tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="/" />
</analyzer>
</fieldType>

<!-- since fields of this type are by default not stored or indexed,
any data added to them will be ignored outright. -->
<fieldType name="ignored" stored="false" indexed="false" multiValued="true" class="solr.StrField" />

<!-- This point type indexes the coordinates as separate fields (subFields)
If subFieldType is defined, it references a type, and a dynamic field
definition is created matching *___<typename>. Alternately, if
subFieldSuffix is defined, that is used to create the subFields.
Example: if subFieldType="double", then the coordinates would be
indexed in fields myloc_0___double,myloc_1___double.
Example: if subFieldSuffix="_d" then the coordinates would be indexed
in fields myloc_0_d,myloc_1_d
The subFields are an implementation detail of the fieldType, and end
users normally should not need to know about them.
-->
<fieldType name="point" class="solr.PointType" dimension="2" subFieldSuffix="_d"/>

<!-- A specialized field for geospatial search. If indexed, this fieldType must not be multivalued. -->
<fieldType name="location" class="solr.LatLonType" subFieldSuffix="_coordinate"/>

<!-- An alternative geospatial field type new to Solr 4. It supports multiValued and polygon shapes.
For more information about this and other Spatial fields new to Solr 4, see:
http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4
-->
<fieldType name="location_rpt" class="solr.SpatialRecursivePrefixTreeFieldType"
geo="true" distErrPct="0.025" maxDistErr="0.001" distanceUnits="kilometers" />

<!-- Money/currency field type. See http://wiki.apache.org/solr/MoneyFieldType
Parameters:
amountLongSuffix: Required. Refers to a dynamic field for the raw amount sub-field.
The dynamic field must have a field type that extends LongValueFieldType.
Note: If you expect to use Atomic Updates, this dynamic field may not be stored.
codeStrSuffix: Required. Refers to a dynamic field for the currency code sub-field.
The dynamic field must have a field type that extends StrField.
Note: If you expect to use Atomic Updates, this dynamic field may not be stored.
defaultCurrency: Specifies the default currency if none specified. Defaults to "USD"
providerClass: Lets you plug in other exchange provider backend:
solr.FileExchangeRateProvider is the default and takes one parameter:
currencyConfig: name of an xml file holding exchange rates
solr.OpenExchangeRatesOrgProvider uses rates from openexchangerates.org:
ratesFileLocation: URL or path to rates JSON file (default latest.json on the web)
refreshInterval: Number of minutes between each rates fetch (default: 1440, min: 60)
-->
<fieldType name="currency" class="solr.CurrencyFieldType" amountLongSuffix="_l_ns" codeStrSuffix="_s_ns"
defaultCurrency="USD" currencyConfig="currency.xml" />


<!-- some examples for different languages (generally ordered by ISO code) -->

<!-- Arabic -->
<fieldType name="text_ar" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- for any non-arabic -->
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ar.txt" />
<!-- normalizes ? to ?, etc -->
<filter class="solr.ArabicNormalizationFilterFactory"/>
<filter class="solr.ArabicStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Bulgarian -->
<fieldType name="text_bg" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_bg.txt" />
<filter class="solr.BulgarianStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Catalan -->
<fieldType name="text_ca" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- removes l‘, etc -->
<filter class="solr.ElisionFilterFactory" ignoreCase="true" articles="lang/contractions_ca.txt"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ca.txt" />
<filter class="solr.SnowballPorterFilterFactory" language="Catalan"/>
</analyzer>
</fieldType>

<!-- CJK bigram (see text_ja for a Japanese configuration using morphological analysis) -->
<fieldType name="text_cjk" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- normalize width before bigram, as e.g. half-width dakuten combine -->
<filter class="solr.CJKWidthFilterFactory"/>
<!-- for any non-CJK -->
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.CJKBigramFilterFactory"/>
</analyzer>
</fieldType>

<!-- Kurdish -->
<fieldType name="text_ckb" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.SoraniNormalizationFilterFactory"/>
<!-- for any latin text -->
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ckb.txt"/>
<filter class="solr.SoraniStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Czech -->
<fieldType name="text_cz" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_cz.txt" />
<filter class="solr.CzechStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Danish -->
<fieldType name="text_da" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_da.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Danish"/>
</analyzer>
</fieldType>

<!-- German -->
<fieldType name="text_de" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_de.txt" format="snowball" />
<filter class="solr.GermanNormalizationFilterFactory"/>
<filter class="solr.GermanLightStemFilterFactory"/>
<!-- less aggressive: <filter class="solr.GermanMinimalStemFilterFactory"/> -->
<!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="German2"/> -->
</analyzer>
</fieldType>

<!-- Greek -->
<fieldType name="text_el" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- greek specific lowercase for sigma -->
<filter class="solr.GreekLowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="false" words="lang/stopwords_el.txt" />
<filter class="solr.GreekStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Spanish -->
<fieldType name="text_es" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_es.txt" format="snowball" />
<filter class="solr.SpanishLightStemFilterFactory"/>
<!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="Spanish"/> -->
</analyzer>
</fieldType>

<!-- Basque -->
<fieldType name="text_eu" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_eu.txt" />
<filter class="solr.SnowballPorterFilterFactory" language="Basque"/>
</analyzer>
</fieldType>

<!-- Persian -->
<fieldType name="text_fa" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<!-- for ZWNJ -->
<charFilter class="solr.PersianCharFilterFactory"/>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ArabicNormalizationFilterFactory"/>
<filter class="solr.PersianNormalizationFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_fa.txt" />
</analyzer>
</fieldType>

<!-- Finnish -->
<fieldType name="text_fi" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_fi.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Finnish"/>
<!-- less aggressive: <filter class="solr.FinnishLightStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- French -->
<fieldType name="text_fr" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- removes l‘, etc -->
<filter class="solr.ElisionFilterFactory" ignoreCase="true" articles="lang/contractions_fr.txt"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_fr.txt" format="snowball" />
<filter class="solr.FrenchLightStemFilterFactory"/>
<!-- less aggressive: <filter class="solr.FrenchMinimalStemFilterFactory"/> -->
<!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="French"/> -->
</analyzer>
</fieldType>

<!-- Irish -->
<fieldType name="text_ga" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- removes d‘, etc -->
<filter class="solr.ElisionFilterFactory" ignoreCase="true" articles="lang/contractions_ga.txt"/>
<!-- removes n-, etc. position increments is intentionally false! -->
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/hyphenations_ga.txt"/>
<filter class="solr.IrishLowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ga.txt"/>
<filter class="solr.SnowballPorterFilterFactory" language="Irish"/>
</analyzer>
</fieldType>

<!-- Galician -->
<fieldType name="text_gl" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_gl.txt" />
<filter class="solr.GalicianStemFilterFactory"/>
<!-- less aggressive: <filter class="solr.GalicianMinimalStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- Hindi -->
<fieldType name="text_hi" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<!-- normalizes unicode representation -->
<filter class="solr.IndicNormalizationFilterFactory"/>
<!-- normalizes variation in spelling -->
<filter class="solr.HindiNormalizationFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_hi.txt" />
<filter class="solr.HindiStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Hungarian -->
<fieldType name="text_hu" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_hu.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Hungarian"/>
<!-- less aggressive: <filter class="solr.HungarianLightStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- Armenian -->
<fieldType name="text_hy" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_hy.txt" />
<filter class="solr.SnowballPorterFilterFactory" language="Armenian"/>
</analyzer>
</fieldType>

<!-- Indonesian -->
<fieldType name="text_id" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_id.txt" />
<!-- for a less aggressive approach (only inflectional suffixes), set stemDerivational to false -->
<filter class="solr.IndonesianStemFilterFactory" stemDerivational="true"/>
</analyzer>
</fieldType>

<!-- Italian -->
<fieldType name="text_it" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<!-- removes l‘, etc -->
<filter class="solr.ElisionFilterFactory" ignoreCase="true" articles="lang/contractions_it.txt"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_it.txt" format="snowball" />
<filter class="solr.ItalianLightStemFilterFactory"/>
<!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="Italian"/> -->
</analyzer>
</fieldType>

<!-- Japanese using morphological analysis (see text_cjk for a configuration using bigramming)

NOTE: If you want to optimize search for precision, use default operator AND in your request
handler config (q.op) Use OR if you would like to optimize for recall (default).
-->
<fieldType name="text_ja" class="solr.TextField" positionIncrementGap="100" autoGeneratePhraseQueries="false">
<analyzer>
<!-- Kuromoji Japanese morphological analyzer/tokenizer (JapaneseTokenizer)

Kuromoji has a search mode (default) that does segmentation useful for search. A heuristic
is used to segment compounds into its parts and the compound itself is kept as synonym.

Valid values for attribute mode are:
normal: regular segmentation
search: segmentation useful for search with synonyms compounds (default)
extended: same as search mode, but unigrams unknown words (experimental)

For some applications it might be good to use search mode for indexing and normal mode for
queries to reduce recall and prevent parts of compounds from being matched and highlighted.
Use <analyzer type="index"> and <analyzer type="query"> for this and mode normal in query.

Kuromoji also has a convenient user dictionary feature that allows overriding the statistical
model with your own entries for segmentation, part-of-speech tags and readings without a need
to specify weights. Notice that user dictionaries have not been subject to extensive testing.

User dictionary attributes are:
userDictionary: user dictionary filename
userDictionaryEncoding: user dictionary encoding (default is UTF-8)

See lang/userdict_ja.txt for a sample user dictionary file.

Punctuation characters are discarded by default. Use discardPunctuation="false" to keep them.

See http://wiki.apache.org/solr/JapaneseLanguageSupport for more on Japanese language support.
-->
<tokenizer class="solr.JapaneseTokenizerFactory" mode="search"/>
<!--<tokenizer class="solr.JapaneseTokenizerFactory" mode="search" userDictionary="lang/userdict_ja.txt"/>-->
<!-- Reduces inflected verbs and adjectives to their base/dictionary forms (辞書形) -->
<filter class="solr.JapaneseBaseFormFilterFactory"/>
<!-- Removes tokens with certain part-of-speech tags -->
<filter class="solr.JapanesePartOfSpeechStopFilterFactory" tags="lang/stoptags_ja.txt" />
<!-- Normalizes full-width romaji to half-width and half-width kana to full-width (Unicode NFKC subset) -->
<filter class="solr.CJKWidthFilterFactory"/>
<!-- Removes common tokens typically not useful for search, but have a negative effect on ranking -->
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ja.txt" />
<!-- Normalizes common katakana spelling variations by removing any last long sound character (U+30FC) -->
<filter class="solr.JapaneseKatakanaStemFilterFactory" minimumLength="4"/>
<!-- Lower-cases romaji characters -->
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

<!-- Latvian -->
<fieldType name="text_lv" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_lv.txt" />
<filter class="solr.LatvianStemFilterFactory"/>
</analyzer>
</fieldType>

<!-- Dutch -->
<fieldType name="text_nl" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_nl.txt" format="snowball" />
<filter class="solr.StemmerOverrideFilterFactory" dictionary="lang/stemdict_nl.txt" ignoreCase="false"/>
<filter class="solr.SnowballPorterFilterFactory" language="Dutch"/>
</analyzer>
</fieldType>

<!-- Norwegian -->
<fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_no.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Norwegian"/>
<!-- less aggressive: <filter class="solr.NorwegianLightStemFilterFactory" variant="nb"/> -->
<!-- singular/plural: <filter class="solr.NorwegianMinimalStemFilterFactory" variant="nb"/> -->
<!-- The "light" and "minimal" stemmers support variants: nb=Bokm?l, nn=Nynorsk, no=Both -->
</analyzer>
</fieldType>

<!-- Portuguese -->
<fieldType name="text_pt" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_pt.txt" format="snowball" />
<filter class="solr.PortugueseLightStemFilterFactory"/>
<!-- less aggressive: <filter class="solr.PortugueseMinimalStemFilterFactory"/> -->
<!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory" language="Portuguese"/> -->
<!-- most aggressive: <filter class="solr.PortugueseStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- Romanian -->
<fieldType name="text_ro" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ro.txt" />
<filter class="solr.SnowballPorterFilterFactory" language="Romanian"/>
</analyzer>
</fieldType>

<!-- Russian -->
<fieldType name="text_ru" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_ru.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Russian"/>
<!-- less aggressive: <filter class="solr.RussianLightStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- Swedish -->
<fieldType name="text_sv" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_sv.txt" format="snowball" />
<filter class="solr.SnowballPorterFilterFactory" language="Swedish"/>
<!-- less aggressive: <filter class="solr.SwedishLightStemFilterFactory"/> -->
</analyzer>
</fieldType>

<!-- Thai -->
<fieldType name="text_th" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.ThaiTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_th.txt" />
</analyzer>
</fieldType>

<!-- Turkish -->
<fieldType name="text_tr" class="solr.TextField" positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.ApostropheFilterFactory"/>
<filter class="solr.TurkishLowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="false" words="lang/stopwords_tr.txt" />
<filter class="solr.SnowballPorterFilterFactory" language="Turkish"/>
</analyzer>
</fieldType>

<!-- Similarity is the scoring routine for each document vs. a query.
A custom Similarity or SimilarityFactory may be specified here, but
the default is fine for most applications.
For more info: http://wiki.apache.org/solr/SchemaXml#Similarity
-->
<!--
<similarity class="com.example.solr.CustomSimilarityFactory">
<str name="paramkey">param value</str>
</similarity>
-->

</schema>

 

db-data-config.xml

<dataConfig>
<dataSource driver="oracle.jdbc.driver.OracleDriver" url="jdbc:oracle:thin:@192.168.9.135:1521:orcl" user="novel" password="novel" />
<document>
<entity transformer="ClobTransformer" name="novel" query="SELECT id,name,author,ntype,nsize,info,nurl FROM t_novel"
deltaQuery="select id from item where last_modified > ‘${dataimporter.last_index_time}‘">
<field column="id" name="id" />
<field column="name" name="name" />
<field column="author" name="author" />
<field column="ntype" name="ntype" />
<field column="nsize" name="nsize" />
<field column="INFO" name="info" clob="true" />
<field column="nurl" name="nurl" />

<!--
<entity name="feature"
query="select DESCRIPTION from FEATURE where ITEM_ID=‘${item.ID}‘"
deltaQuery="select ITEM_ID from FEATURE where last_modified > ‘${dataimporter.last_index_time}‘"
parentDeltaQuery="select ID from item where ID=${feature.ITEM_ID}">
<field name="features" column="DESCRIPTION" />
</entity>

<entity name="item_category"
query="select CATEGORY_ID from item_category where ITEM_ID=‘${item.ID}‘"
deltaQuery="select ITEM_ID, CATEGORY_ID from item_category where last_modified > ‘${dataimporter.last_index_time}‘"
parentDeltaQuery="select ID from item where ID=${item_category.ITEM_ID}">
<entity name="category"
query="select DESCRIPTION from category where ID = ‘${item_category.CATEGORY_ID}‘"
deltaQuery="select ID from category where last_modified > ‘${dataimporter.last_index_time}‘"
parentDeltaQuery="select ITEM_ID, CATEGORY_ID from item_category where CATEGORY_ID=${category.ID}">
<field column="DESCRIPTION" name="cat" />
</entity>
</entity>
-->
</entity>
</document>
</dataConfig>

 


































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































以上是关于NEQR: novel enhanced quantum representation的主要内容,如果未能解决你的问题,请参考以下文章

sql如何实现从一张表检索数据插入到另外一张表中的指定字段?

请问建表时,关于QUAN和CURR类型

其他项目怎么做quan? [私人]

text quan_ly_thu_chi

python novel_spider.py

text Quan th thu chi - phan tich他丁字裤