asyncio的简单使用,python异步高效处理数据,asyncio.get_event_loop(),loop.run_until_complete(main()),loop.close()

Posted 高颜值的殺生丸

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了asyncio的简单使用,python异步高效处理数据,asyncio.get_event_loop(),loop.run_until_complete(main()),loop.close()相关的知识,希望对你有一定的参考价值。

Asyncio 是一个基于事件循环的异步I/O框架,它提供了高效的协程实现,能够轻松地编写高并发的Python程序。Asyncio 在 Python 3.4 中首次引入,它的核心是事件循环(Event Loop),通过协程实现异步编程,避免了传统线程模型中的锁和线程切换开销,提高了程序的并发性能。

Asyncio的工作原理如下:

  1. 创建一个事件循环(Event Loop)对象
  2. 编写协程函数,使用关键字 async 定义
  3. 将协程函数封装为任务(Task)对象
  4. 将任务对象添加到事件循环中
  5. 启动事件循环,等待协程函数执行完成

下面是一个使用Asyncio实现异步的框架程序的示例,它创建了一个任务列表,列表中有100个任务,每个任务返回一个数字,数字从0开始,使用 run_until_complete 方法等待所有任务完成:

import asyncio

async def task(n):
    await asyncio.sleep(1)  # 模拟耗时操作
    return n

async def main():
    tasks = [asyncio.create_task(task(i)) for i in range(100)]
    results = await asyncio.gather(*tasks)
    print(results)

if __name__ == \'__main__\':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    loop.close()

  

在这个示例中,我们首先定义了一个异步协程函数 task,它模拟了一个耗时的操作,然后我们定义了一个 main 函数,它创建了一个任务列表,包含了100个 task 协程函数的任务,并通过 asyncio.gather 方法等待所有任务完成,并将结果打印出来。

最后,我们使用 asyncio.get_event_loop 方法获取事件循环对象,使用 run_until_complete 方法等待 main 函数执行完成,关闭事件循环。

 

python异步编程之asyncio(百万并发)

[python异步编程之asyncio(百万并发)]

前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最新的微服务框架japronto,resquests per second可达百万级。

python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。

在学习asyncio之前,我们先来理清楚同步/异步的概念

·同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。。。

·异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。

一、asyncio

下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)模拟耗时1秒的io操作。

·****同步代码

import time

def hello():
    time.sleep(1)

def run():
    for i in range(5):
        hello()
        print(‘Hello World:%s‘ % time.time())  # 任何伟大的代码都是从Hello World 开始的!
if __name__ == ‘__main__‘:
    run()

输出:(间隔约是1s)

Hello World:1527595175.4728756
Hello World:1527595176.473001
Hello World:1527595177.473494
Hello World:1527595178.4739306
Hello World:1527595179.474482

·****异步代码

import time
import asyncio

# 定义异步函数
async def hello():
    asyncio.sleep(1)
    print(‘Hello World:%s‘ % time.time())

def run():
    for i in range(5):
        loop.run_until_complete(hello())

loop = asyncio.get_event_loop()
if __name__ ==‘__main__‘:
    run()

输出:

Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
async def 用来定义异步函数,其内部有异步操作。每个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会创建事件循环,你需要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。
 

二、aiohttp

  如果需要并发http请求怎么办呢,通常是用requests,但requests是同步的库,如果想异步的话需要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要建立一个session对象,然后用session对象去打开网页。session可以进行多项操作,比如post, get, put, head等。

基本用法:

async with ClientSession() as session:
    async with session.get(url) as response:

aiohttp异步实现的例子:

import asyncio
from aiohttp import ClientSession


tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
    async with ClientSession() as session:
        async with session.get(url) as response:
            response = await response.read()
            print(response)

if __name__ == ‘__main__‘:
    loop = asyncio.get_event_loop()
    loop.run_until_complete(hello(url))

首先async def 关键字定义了这是个异步函数,await 关键字加在需要等待的操作前面,response.read()等待request响应,是个耗IO操作。然后使用ClientSession类发起http请求。

多链接异步访问

如果我们需要请求多个URL该怎么办呢,同步的做法访问多个URL只需要加个for循环就可以了。但异步的实现方式并没那么容易,在之前的基础上需要将hello()****包装在asyncio的Future对象中,然后将Future对象列表作为任务传递给事件循环

import time
import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
    async with ClientSession() as session:
        async with session.get(url) as response:
            response = await response.read()
#            print(response)
            print(‘Hello World:%s‘ % time.time())

def run():
    for i in range(5):
        task = asyncio.ensure_future(hello(url.format(i)))
        tasks.append(task)


if __name__ == ‘__main__‘:
    loop = asyncio.get_event_loop()
    run()
    loop.run_until_complete(asyncio.wait(tasks))

输出:

Hello World:1527754874.8915546
Hello World:1527754874.899039
Hello World:1527754874.90004
Hello World:1527754874.9095392
Hello World:1527754874.9190395

收集http响应

好了,上面介绍了访问不同链接的异步实现方式,但是我们只是发出了请求,如果要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可通过asyncio.gather(*tasks)将响应全部收集起来,具体通过下面实例来演示。

import time
import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
    async with ClientSession() as session:
        async with session.get(url) as response:
#            print(response)
            print(‘Hello World:%s‘ % time.time())
            return await response.read()

def run():
    for i in range(5):
        task = asyncio.ensure_future(hello(url.format(i)))
        tasks.append(task)
    result = loop.run_until_complete(asyncio.gather(*tasks))
    print(result)

if __name__ == ‘__main__‘:
    loop = asyncio.get_event_loop()
    run()

输出:

Hello World:1527765369.0785167
Hello World:1527765369.0845182
Hello World:1527765369.0910277
Hello World:1527765369.0920424
Hello World:1527765369.097017
[b‘<!DOCTYPE html>
<!--STATUS OK-->
<html>
<head>
......

异常解决

假如你的并发达到2000个,程序会报错:ValueError: too many file descriptors in select()。报错的原因字面上看是 Python 调取的 select 对打开的文件有最大数量的限制,这个其实是操作系统的限制,linux打开文件的最大数默认是1024,windows默认是509,超过了这个值,程序就开始报错。这里我们有三种方法解决这个问题:

1.限制并发数量。(一次不要塞那么多任务,或者限制最大并发数量)

2.使用回调的方式

3.修改操作系统打开文件数的最大限制,在系统里有个配置文件可以修改默认值,具体步骤不再说明了。

不修改系统默认配置的话,个人推荐限制并发数的方法,设置并发数为500,处理速度更快。

#coding:utf-8
import time,asyncio,aiohttp


url = ‘https://www.baidu.com/‘
async def hello(url,semaphore):
    async with semaphore:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as response:
                return await response.read()


async def run():
    semaphore = asyncio.Semaphore(500) # 限制并发量为500
    to_get = [hello(url.format(),semaphore) for _ in range(1000)] #总共1000任务
    await asyncio.wait(to_get)


if __name__ == ‘__main__‘:
#    now=lambda :time.time()
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run())
    loop.close()

以上是关于asyncio的简单使用,python异步高效处理数据,asyncio.get_event_loop(),loop.run_until_complete(main()),loop.close()的主要内容,如果未能解决你的问题,请参考以下文章

Python黑魔法 --- 异步IO( asyncio) 协程

python异步编程之asyncio(百万并发)

asyncio:Python异步编程模块

python异步编程之asyncio(百万并发)

Python3异步编程

如何使用 asyncio 在 Python 3 中异步运行 requests.get?