Python Treelib 多叉树 数据结构 中文使用帮助文档
Posted 夕月一弯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python Treelib 多叉树 数据结构 中文使用帮助文档相关的知识,希望对你有一定的参考价值。
树,对于计算机编程语言来说是一个重要的数据结构。它具有广泛的应用,比如文件系统的分层数据结构和机器学习中的一些算法。这里创建了treelib来提供Python中树数据结构的高效实现。
官方文档:https://treelib.readthedocs.io/en/latest/
1.安装
主要通过pip和easy_install进行安装
windows下:pip install treelib
Linux下:sudo easy_install -U treelib
License许可:
Redistributed under Apache License (2.0) since version 1.3.0.
2.类定义
主要分为Tree和Node两个类,以支持多叉树的实现
2.1.Tree类
魔法方法:
构造函数:新建一棵树或通过深拷贝、浅拷贝方式复制一棵树
Tree(self, tree=None, deep=False)
len取长度:返回树的节点个数,同Tree.size()
len(Tree)
str字符串:Tree对象转换为str对象,可输出
str(Tree)
unicode字符串:Tree对象转换为unicode对象,可输出
unicode(Tree)
方法:
add_node(self, node, parent=None)
向树添加一个node节点,该节点为Node类对象,其父节点为parent
all_nodes(self)
以list返回所有节点
children(self, nid)
返回以nid为标识(identifier)子节点,nid不存在则返回list为空
contains(self, nid)
检查树中是否包含以nid为标识的节点
create_node(self, tag=None, identifier=None, parent=None, data=None)
以parent为父节点,在树上创建一个节点(类似于创建Node对象,在add_node添加Node)
depth(self, node=None)
返回树的深度(int),若给定node则返回以该节点为根的树的深度
expand_tree(self, nid=None, mode=1, filter=None, key=None, reverse=False)
Python生成器,松散地基于 John R. Anderson, Albert T. Corbett, and Brian J. Reiser的一个算法 (’Essential LISP’ , page 239-241)
UPDATE: the @filter function is performed on Node object during traversing.
UPDATE: the @key and @reverse are present to sort nodes at each level.
get_node(self, nid)
返回以nid为标识的节点,nid不存在则返回为空
is_branch(self, nid)
返回以nid为节点的子节点标识(identifier)的list列表,nid不存在则返回list为空
leaves(self, root=None)
返回所有叶节点对象list列表,若给定root则返回以root为根节点的树的所有叶节点对象list列表
level(self, nid, filter=None)
返回指定深度的所有节点,根节点按深度0计算
Update: @filter params is added to calculate level passing exclusive nodes.
link_past_node(self, nid)
将某节点的父节点与子节点链接的方法,将该节点从树上删除
比如, 一个a -> b -> c树 ,删除b节点, 则剩下a -> c树
move_node(self, source, destination)
将source的节点移动至destination的子节点
parent(self, nid)
返回以nid为标识的节点的父节点
paste(self, nid, new_tree, deepcopy=False)
粘贴树,通过连接new_tree的根节点与nid标识的节点,设置deepcopy可进行深拷贝
Update: add @deepcopy of pasted tree.
paths_to_leaves(self)
取得根节点到每一个叶节点的标识路径,返回值为标识list列表的list列表(二重列表),根节点不省略
比如一棵树:
Harry
|___ Bill
|___ Jane
| |___ Diane
| |___ George
| |___ Jill
| |___ Mary
| |___ Mark
1
输出结果:
[[‘harry‘, ‘jane‘, ‘diane‘, ‘mary‘], [‘harry‘, ‘jane‘, ‘mark‘], [‘harry‘, ‘jane‘, ‘diane‘, ‘george‘, ‘jill‘], [‘harry‘, ‘bill‘]]
remove_node(self, identifier)
移除以nid标识的节点,同时移除其所有的子节点
返回值为移除的节点个数
remove_subtree(self, nid)
移除以nid标识为根节点的一棵子树
返回值为移除该子树的树,nid不存在则返回一个空树
该方法类似于remove_node(self,nid) 实现效果相同但返回值不同:
remove_node 返回移除的节点个数
remove_subtree 返回移除该子树的树
建议使用remove_node来删除节点,因为remove_subtree将消耗内存以存储新树(返回值)
rsearch(self, nid, filter=None)
遍历从以nid为标识的节点到根节点的路径(枝)
save2file(self, filename, nid=None, level=0, idhidden=True, filter=None, key=None, reverse=False, line_type=u‘ascii-ex‘, data_property=None)
将树保存到文件,以作离线分析
show(self, nid=None, level=0, idhidden=True, filter=None, key=None, reverse=False, line_type=u‘ascii-ex‘, data_property=None)
输出树结构
siblings(self, nid)
返回以nid为标识的节点的兄弟节点
返回值为兄弟节点list列表,根节点无兄弟节点,返回空列表
size(self, level=None)
返回指定深度(level)节点个数,若无指定则返回整棵树节点个数
subtree(self, nid)
浅拷贝方式建立一个以nid为标识的节点作为根节点的子树,nid不存在则返回一个空树
若使用深拷贝,则请使用构造函数建立新树,如下:
e.g.
new_tree = Tree(t.subtree(t.root), deep=True)
to_dict(self, nid=None, key=None, sort=True, reverse=False, with_data=False)
将树转换为dict字典
to_json(self, with_data=False, sort=True, reverse=False)
将树转换为JSON格式输出
2.2.Node类
魔法方法:
构造函数:新建一个Node节点对象
变量 名称 说明
tag 标签 树输出时显示,默认为随机值
identifier 标识 树中唯一,不可重复,默认为随机值
data 数据 存储节点中数据
Node(self, tag=None, identifier=None, expanded=True, data=None)
方法:
is_leaf(self)
检查该节点是否是叶节点,返回布尔值
is_root(self)
检查该节点是否是根节点,返回布尔值
update_bpointer(self, nid)
设置_bpointer指针
update_fpointer(self, nid, mode=0)
设置_fpointer指针
3.实际应用
来源于官方帮助文档:treelib.readthedocs.io
3.1.基本用法
下面的实例,展示了建立一棵树的基本方法
1 >>> from treelib import Node, Tree 2 >>> tree = Tree() 3 >>> tree.create_node("Harry", "harry") # root node 4 >>> tree.create_node("Jane", "jane", parent="harry") 5 >>> tree.create_node("Bill", "bill", parent="harry") 6 >>> tree.create_node("Diane", "diane", parent="jane") 7 >>> tree.create_node("Mary", "mary", parent="diane") 8 >>> tree.create_node("Mark", "mark", parent="jane") 9 >>> tree.show() 10 Harry 11 ├── Bill 12 └── Jane 13 ├── Diane 14 │ └── Mary 15 └── Mark
3.2.API 样例
下面根据上述的数作为例子,展示一部分API用法样例
* 例1:利用特殊方法扩展一棵树
1 >>> print(‘,‘.join([tree[node].tag for node in 2 tree.expand_tree(mode=Tree.DEPTH)])) 3 Harry,Bill,Jane,Diane,Mary,Mark
例2:利用自定义过滤扩展一棵树
1 >>> print(‘,‘.join([tree[node].tag for node in 2 tree.expand_tree(filter = lambda x: 3 x.identifier != ‘diane‘)])) 4 Harry,Bill,Jane,Mark
例3:获得以“‘diane”为根节点的子树
1 >>> sub_t = tree.subtree(‘diane‘) 2 >>> sub_t.show() 3 Diane 4 └── Mary
例4:复制以“‘diane”为根节点的子树
1 >>> new_tree = Tree() 2 >>> new_tree.create_node("n1", 1) # root node 3 >>> new_tree.create_node("n2", 2, parent=1) 4 >>> new_tree.create_node("n3", 3, parent=1) 5 >>> tree.paste(‘bill‘, new_tree) 6 >>> tree.show() 7 Harry 8 ├── Bill 9 │ └── n1 10 │ ├── n2 11 │ └── n3 12 └── Jane 13 ├── Diane 14 │ └── Mary 15 └── Mark
例5:从树上删除已存在节点
1 >>> tree.remove_node(1) 2 >>> tree.show() 3 Harry 4 ├── Bill 5 └── Jane 6 ├── Diane 7 │ └── Mary 8 └── Mark
例6:将节点移动至另一父节点
1 >>> tree.move_node(‘mary‘, ‘harry‘) 2 >>> tree.show() 3 Harry 4 ├── Bill 5 ├── Jane 6 │ ├── Diane 7 │ └── Mark 8 └── Mary
例7:获得树深度
>>> tree.depth()
2
例8:获得节点所在深度
>>> node = tree.get_node("bill") >>> tree.depth(node) 1
例9:输出树结构
以“ascii-em”形式输出:
>>> tree.show(line_type="ascii-em") Harry ╠══ Bill ╠══ Jane ║ ╠══ Diane ║ ╚══ Mark ╚══ Mary
以JSON格式输出:
>>> print(tree.to_json(with_data=True)) {"Harry": {"data": null, "children": [{"Bill": {"data": null}}, {"Jane": {"data": null, "children": [{"Diane": {"data": null}}, {"Mark": {"data": null}}]}}, {"Mary": {"data": null}}]}}
3.3.更多用法
有时,你需要树来存储你的数据结构,在最新版本的treelib当中支持了.data属性,可以存储任何数据。
比如,定义一个Flower类:
>>> class Flower(object): def __init__(self, color): self.color = color
于是可以建立Flower树:
>>> ftree = Tree() >>> ftree.create_node("Root", "root", data=Flower("black")) >>> ftree.create_node("F1", "f1", parent=‘root‘, data=Flower("white")) >>> ftree.create_node("F2", "f2", parent=‘root‘, data=Flower("red"))
按照.data的属性输出树结构:
1 >>> ftree.show(data_property="color") 2 black 3 ├── white 4 └── red
注意:在1.2.5版本之前,你需要继承并重写Node类方法,比如:
1 >>> class FlowerNode(treelib.Node): 2 def __init__(self, color): 3 self.color = color 4 >>> # create a new node 5 >>> fnode = FlowerNode("white")
————————————————
版权声明:本文为CSDN博主「KAlbertLee」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/KAlbertLee/article/details/70158015
以上是关于Python Treelib 多叉树 数据结构 中文使用帮助文档的主要内容,如果未能解决你的问题,请参考以下文章