python多线程

Posted 诚实善良小郎君

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python多线程相关的知识,希望对你有一定的参考价值。

在介绍Python中的线程之前,先明确一个问题,Python中的多线程是假的多线程!
为什么这么说,我们先明确一个概念,全局解释器锁(GIL)

什么是GIL

Python代码的执行由Python虚拟机(解释器)来控制,同时只有一个线程在执行。对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同时只有一个线程在运行。

为什么要GIL

为了线程间数据的一致性和状态同步的完整性,(例如:线程2需要线程1执行完成的结果,然而线程2又比线程1执行时间短,线程2执行完成,线程1仍然还在执行,这就是数据的同步性)

GIL的影响

只有一个线程在运行,无法使用多核。

  • 在多线程环境中,Python虚拟机按照以下方式执行。

    1.设置GIL。
    2.切换到一个线程去执行。
    3.运行。
    4.把线程设置为睡眠状态。
    5.解锁GIL。
    6.再次重复以上步骤。
    比方我有一个4核的CPU,那么这样一来,在单位时间内每个核只能跑一个线程,然后时间片轮转切换。
    但是Python不一样,它不管你有几个核,单位时间多个核只能跑一个线程,然后时间片轮转。
    执行一段时间后让出,多线程在Python中只能交替执,10核也只能用到1个核
    例如:

from threading import Thread
def loop():
    while True:
        print("亲爱的,我错了,我能吃饭了吗?")

if __name__ == \'__main__\':

    for i in range(3):
        t = Thread(target=loop)
        t.start()

    while True:
        pass

而如果我们变成进程呢?cpu --100%

from multiprocessing import Process
def loop():
    while True:
        print("亲爱的,我错了,我能吃饭了吗?")

if __name__ == \'__main__\':

    for i in range(3):
        t = Process(target=loop)
        t.start()

    while True:
        pass

多线程怎么使用多核

  • 1、重写python编译器(官方cpython)如使用:PyPy解释器
  • 2、调用C语言的链接库

cpu密集型(计算密集型)、I/O密集型

  • 计算密集型任务由于主要消耗CPU资源,代码运行效率至关重要,C语言编写
  • IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成99%的时间花费在IO上,脚本语言是首选,C语言最差。

2、创建多线程

def doSth(arg):
    # 拿到当前线程的名称和线程号id
    threadName = threading.current_thread().getName()
    tid = threading.current_thread().ident
    for i in range(5):
        print("%s *%d @%s,tid=%d" % (arg, i, threadName, tid))
        time.sleep(2)

1、使用_thread.start_new_thread开辟子线程

def simpleThread():
    # 创建子线程,执行doSth
    # 用这种方式创建的线程为【守护线程】(主线程死去“护卫”也随“主公”而去)
    _thread.start_new_thread(doSth, ("拍森",))

    mainThreadName = threading.current_thread().getName()
    print(threading.current_thread())
    # 5秒的时间以内,能看到主线程和子线程在并发打印
    for i in range(5):
        print("劳资是主线程@%s" % (mainThreadName))
        time.sleep(1)

    # 阻塞主线程,以使【守护线程】能够执行完毕
    while True:
        pass

2、 通过创建threading.Thread对象实现子线程

def threadingThread():
    # 默认不是【守护线程】
    t = threading.Thread(target=doSth, args=("大王派我来巡山",)) # args=(,) 必须是元组
    # t.setDaemon(True)  # 设置为守护线程
    t.start()  # 启动线程,调用run()方法
    t.join()  # 等待

3、通过继承threading.Thread类,进而创建对象实现子线程

class MyThread(threading.Thread):
    def __init__(self, name, task, subtask):
        super().__init__()

        self.name = name  # 覆盖了父类的name
        self.task = task  # MyThread自己的属性
        self.subtask = subtask

    # 覆写父类的run方法,
    # run方法以内为【要跑在子线程内的业务逻辑】(thread.start()会触发的业务逻辑)
    def run(self):
        for i in range(5):
            print("[%s]并[%s] *%d @%s" % (self.task, self.subtask, i, threading.current_thread().getName()))
            time.sleep(2)


def classThread():
    mt = MyThread("小分队I", "巡山", "扫黄")
    mt.start()  #  启动线程

4、几个重要的API

并行 : 多个任务同时进行,但python多线程不允许,多进程是允许的

并发 : 多个任务在单个CPU交替执行 ,

串行 : 任务在CPU之间快速切换 , 交替执行

def importantAPI():
    print(threading.currentThread())  # 返回当前的线程变量
    # 创建五条子线程
    t1 = threading.Thread(target=doSth, args=("巡山",))
    t2 = threading.Thread(target=doSth, args=("巡水",))
    t3 = threading.Thread(target=doSth, args=("巡鸟",))

    t1.start()  # 开启线程
    t2.start()
    t3.start()

    print(t1.isAlive())  # 返回线程是否活动的
    print(t2.isDaemon())  # 是否是守护线程
    print(t3.getName())  # 返回线程名
    t3.setName("巡鸟")  # 设置线程名
    print(t3.getName())
    print(t3.ident)  # 返回线程号

    # 返回一个包含正在运行的线程的list
    tlist = threading.enumerate()
    print("当前活动线程:", tlist)

    # 返回正在运行的线程数量(在数值上等于len(tlist))
    count = threading.active_count()
    print("当前活动线程有%d条" % (count))

3、线程冲突

\'\'\'
【线程冲突】示例:
多个线程并发访问同一个变量而互相干扰
互斥锁
    状态:锁定/非锁定
    #创建锁
        lock = threading.Lock()
    #锁定
        lock.acquire()
    #释放
        lock.release()
\'\'\'
\'\'\'
互相锁住对方线程需要的资源,造成死锁局面
递归锁,用于解决死锁的问题,可重复锁
\'\'\'
import threading
import time
money = 0

# CPU分配的时间片不足以完成一百万次加法运算,
# 因此结果还没有被保存到内存中就被其它线程所打断
def addMoney():
    global money
    for i in range(1000000):
        money += 1
    print(money)

# 创建线程锁
lock = threading.Lock()

def addMoneyWithLock():
    # print("addMoneyWithLock")
    time.sleep(1)
    global money
    # print(lock.acquire())
    # if lock.acquire():
    #     for i in range(1000000):
    #         money += 1
    # lock.release()
    # 独占线程锁
    with lock:  # 阻塞直到拿到线程锁

        # -----下面的代码只有拿到lock对象才能执行-----
        for i in range(1000000):
            money += 1
        # 释放线程锁,以使其它线程能够拿到并执行逻辑
        # ----------------锁已被释放-----------------

    print(money

# 5条线程同时访问money变量,导致结果不正确
def conflictDemo():
    for i in range(5):
        t = threading.Thread(target=addMoney)
        t.start()

# 通过线程同步(依次执行)解决线程冲突
def handleConflictBySync():
    for i in range(5):
        t = threading.Thread(target=addMoney)
        t.start()
        t.join()  # 一直阻塞到t运行完毕

# 通过依次独占线程锁解决线程冲突
def handleConflictByLock():
    # 并发5条线程
    for i in range(5):
        t = threading.Thread(target=addMoneyWithLock)
        t.start()

if __name__ == \'__main__\':
    # conflictDemo()
    # handleConflictBySync()
    handleConflictByLock()

4、使用Semaphore调度线程:控制最大并发量

\'\'\'
使用Semaphore调度线程:控制最大并发量
\'\'\'
import threading
import time
# 允许最大并发量3
sem = threading.Semaphore(3)

def doSth(arg):
    with sem:
        tname = threading.current_thread().getName()
        print("%s正在执行【%s】" % (tname, arg))
        time.sleep(1)
        print("-----%s执行完毕!-----\\n" % (tname))
        time.sleep(0.1)

if __name__ == \'__main__\':

    # 开启10条线程
    for i in range(10):
        threading.Thread(target=doSth, args=("巡山",), name="小分队%d" % (i)).start()
    pass

以上是关于python多线程的主要内容,如果未能解决你的问题,请参考以下文章

[Python3] 043 多线程 简介

python中的多线程和多进程编程

多线程 Thread 线程同步 synchronized

多个用户访问同一段代码

在 Python 多处理进程中运行较慢的 OpenCV 代码片段

线程学习知识点总结