[XXL-JOB] 分布式调度XXL-JOB快速上手

Posted 佛祖让我来巡山

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[XXL-JOB] 分布式调度XXL-JOB快速上手相关的知识,希望对你有一定的参考价值。

1.概述

1.1什么是任务调度

我们可以思考一下下面业务场景的解决方案:

  • 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券

  • 某银行系统需要在信用卡到期还款日的前三天进行短信提醒

  • 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总

以上场景就是任务调度所需要解决的问题

任务调度是为了自动完成特定任务,在约定的特定时刻去执行任务的过程

1.2 为什么需要分布式调度

使用Spring中提供的注解@Scheduled,也能实现调度的功能

在业务类中方法中贴上这个注解,然后在启动类上贴上@EnableScheduling注解

@Scheduled(cron = "0/20 * * * * ? ")
 public void doWork()
     //doSomething   
 

感觉Spring给我们提供的这个注解可以完成任务调度的功能,好像已经完美解决问题了,为什么还需要分布式呢?

主要有如下这几点原因:

  1. 高可用:单机版的定式任务调度只能在一台机器上运行,如果程序或者系统出现异常就会导致功能不可用。

  2. 防止重复执行: 在单机模式下,定时任务是没什么问题的。但当我们部署了多台服务,同时又每台服务又有定时任务时,若不进行合理的控制在同一时间,只有一个定时任务启动执行,这时,定时执行的结果就可能存在混乱和错误了

  3. 单机处理极限:原本1分钟内需要处理1万个订单,但是现在需要1分钟内处理10万个订单;原来一个统计需要1小时,现在业务方需要10分钟就统计出来。你也许会说,你也可以多线程、单机多进程处理。的确,多线程并行处理可以提高单位时间的处理效率,但是单机能力毕竟有限(主要是CPU、内存和磁盘),始终会有单机处理不过来的情况。

1.3 XXL-JOB介绍

XXL-Job:是大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展

大众点评目前已接入XXL-JOB,该系统在内部已调度约100万次,表现优异。

目前已有多家公司接入xxl-job,包括比较知名的大众点评,京东,优信二手车,360金融 (360),联想集团 (联想),易信 (网易)等等

官网地址 https://www.xuxueli.com/xxl-job/

系统架构图

设计思想

将调度行为抽象形成“调度中心”公共平台,而平台自身并不承担业务逻辑,“调度中心”负责发起调度请求。

将任务抽象成分散的JobHandler,交由“执行器”统一管理,“执行器”负责接收调度请求并执行对应的JobHandler中业务逻辑。

因此,“调度”和“任务”两部分可以相互解耦,提高系统整体稳定性和扩展性;

2.快速入门

2.1 下载源码

源码下载地址:

https://github.com/xuxueli/xxl-job

https://gitee.com/xuxueli0323/xxl-job

2.1 初始化调度数据库

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

“调度数据库初始化SQL脚本” 位置为:

/xxl-job/doc/db/tables_xxl_job.sql

2.2 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

2.3 配置部署调度中心

2.3.1 调度中心配置

修改xxl-job-admin项目的配置文件application.properties,把数据库账号密码配置上

### web
server.port=8080
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://192.168.202.200:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=WolfCode_2017
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
spring.datasource.hikari.validation-timeout=1000

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.from=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=default_token

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

2.3.2 部署项目

运行XxlJobAdminApplication程序即可.

调度中心访问地址: http://localhost:8080/xxl-job-admin

默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

至此“调度中心”项目已经部署成功。

2.4 配置部署执行器项目

2.4.1 添加Maven依赖

创建SpringBoot项目并且添加如下依赖:

<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.3.1</version>
</dependency>

2.4.2 执行器配置

在配置文件中添加如下配置:

### 调度中心部署根地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### 执行器通讯TOKEN [选填]:非空时启用;
xxl.job.accessToken=default_token
### 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
xxl.job.executor.appname=xxl-job-executor-sample
### 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
xxl.job.executor.address=
### 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
xxl.job.executor.ip=127.0.0.1
### 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
xxl.job.executor.port=9999
### 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
xxl.job.executor.logretentiondays=30

2.4.3 添加执行器配置

创建XxlJobConfig配置对象:

@Configuration
public class XxlJobConfig 
    @Value("$xxl.job.admin.addresses")
    private String adminAddresses;
    @Value("$xxl.job.accessToken")
    private String accessToken;
    @Value("$xxl.job.executor.appname")
    private String appname;
    @Value("$xxl.job.executor.address")
    private String address;
    @Value("$xxl.job.executor.ip")
    private String ip;
    @Value("$xxl.job.executor.port")
    private int port;
    @Value("$xxl.job.executor.logpath")
    private String logPath;
    @Value("$xxl.job.executor.logretentiondays")
    private int logRetentionDays;

    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() 
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    

2.4.4 添加任务处理类

添加任务处理类,交给Spring容器管理,在处理方法上贴上@XxlJob注解

@Component
public class SimpleXxlJob 
    @XxlJob("demoJobHandler")
    public void demoJobHandler() throws Exception 
        System.out.println("执行定时任务,执行时间:"+new Date());
    

2.5 运行HelloWorld程序

2.5.1 任务配置&触发执行

登录调度中心,在任务管理中新增任务,配置内容如下:

新增后界面如下:

 接着启动定时调度任务

2.5.2 查看日志

在调度中心的调度日志中就可以看到,任务的执行结果.

 管控台也可以看到任务的执行信息.

2.6 GLUE模式(Java)

任务以源码方式维护在调度中心,支持通过Web IDE在线更新,实时编译和生效,因此不需要指定JobHandler。

( “GLUE模式(Java)” 运行模式的任务实际上是一段继承自IJobHandler的Java类代码,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务.

添加Service

@Service
public class HelloService 
    public void methodA()
        System.out.println("执行MethodA的方法");
    
    public void methodB()
        System.out.println("执行MethodB的方法");
    

添加任务配置

 通过GLUE IDE在线编辑代码

 编写内容如下:

package com.xxl.job.service.handler;

import cn.wolfcode.xxljobdemo.service.HelloService;
import com.xxl.job.core.handler.IJobHandler;
import org.springframework.beans.factory.annotation.Autowired;

public class DemoGlueJobHandler extends IJobHandler 
    @Autowired
    private HelloService helloService;
    @Override
    public void execute() throws Exception 
        helloService.methodA();
    

启动并执行程序

2.6 执行器集群

2.6.1 集群环境搭建

在IDEA中设置SpringBoot项目运行开启多个集群

 

启动两个SpringBoot程序,需要修改Tomcat端口和执行器端口

  • Tomcat端口8090程序的命令行参数如下:
-Dserver.port=8090 -Dxxl.job.executor.port=9998
  • Tomcat端口8090程序的命令行参数如下:
-Dserver.port=8091 -Dxxl.job.executor.port=9999

在任务管理中,修改路由策略,修改成轮询

 重新启动,我们可以看到效果是,定时任务会在这两台机器中进行轮询的执行

  • 8090端口的控制台日志如下:

  •  8091端口的控制台日志如下:

 

2.6.2 调度路由算法讲解

当执行器集群部署时,提供丰富的路由策略,包括:

  1. FIRST(第一个):固定选择第一个机器

  2. LAST(最后一个):固定选择最后一个机器;

  3. ROUND(轮询):依次的选择在线的机器发起调度

  4. RANDOM(随机):随机选择在线的机器;

  5. CONSISTENT_HASH(一致性HASH):

    每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  6. LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  7. LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  8. FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  9. BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  10. SHARDING_BROADCAST(分片广播):

    广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

3. 分片功能讲解

3.1 案例需求讲解

需求:我们现在实现这样的需求,在指定节假日,需要给平台的所有用户去发送祝福的短信.

3.1.1 初始化数据

在数据库中导入xxl_job_demo.sql数据

3.1.2 集成Druid&MyBatis

添加依赖

<!--MyBatis驱动-->
<dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>1.2.0</version>
</dependency>
<!--mysql驱动-->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
</dependency>
<!--lombok依赖-->
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <scope>provided</scope>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>

添加配置

spring.datasource.url=jdbc:mysql://localhost:3306/xxl_job_demo?serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=UTF-8
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
spring.datasource.username=root
spring.datasource.password=WolfCode_2017

添加实体类

@Setter
@Getter
public class UserMobilePlan 
    private Long id;//主键
    private String username;//用户名
    private String nickname;//昵称
    private String phone;//手机号码
    private String info;//备注

添加Mapper处理类

@Mapper
public interface UserMobilePlanMapper 
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();

3.1.3 业务功能实现

任务处理方法实现

@XxlJob("sendMsgHandler")
public void sendMsgHandler() throws Exception
    List<UserMobilePlan> userMobilePlans = userMobilePlanMapper.selectAll();
    System.out.println("任务开始时间:"+new Date()+",处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->
        try 
            //模拟发送短信动作
            TimeUnit.MILLISECONDS.sleep(10);
         catch (InterruptedException e) 
            e.printStackTrace();
        
    );
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");

任务配置信息

3.2 分片概念讲解

比如我们的案例中有2000+条数据,如果不采取分片形式的话,任务只会在一台机器上执行,这样的话需要20+秒才能执行完任务.

如果采取分片广播的形式的话,一次任务调度将会广播触发对应集群中所有执行器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

获取分片参数方式:

// 可参考Sample示例执行器中的示例任务"ShardingJobHandler"了解试用 
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();

通过这两个参数,我们可以通过求模取余的方式,分别查询,分别执行,这样的话就可以提高处理的速度.

之前2000+条数据只在一台机器上执行需要20+秒才能完成任务,分片后,有两台机器可以共同完成2000+条数据,每台机器处理1000+条数据,这样的话只需要10+秒就能完成任务

3.3 案例改造成任务分片

Mapper增加查询方法

@Mapper
public interface UserMobilePlanMapper 
    @Select("select * from t_user_mobile_plan where mod(id,#shardingTotal)=#shardingIndex")
    List<UserMobilePlan> selectByMod(@Param("shardingIndex") Integer shardingIndex,@Param("shardingTotal")Integer shardingTotal);
    @Select("select * from t_user_mobile_plan")
    List<UserMobilePlan> selectAll();

任务类方法

@XxlJob("sendMsgShardingHandler")
public void sendMsgShardingHandler() throws Exception
    System.out.println("任务开始时间:"+new Date());
    int shardTotal = XxlJobHelper.getShardTotal();
    int shardIndex = XxlJobHelper.getShardIndex();
    List<UserMobilePlan> userMobilePlans = null;
    if(shardTotal==1)
        //如果没有分片就直接查询所有数据
        userMobilePlans = userMobilePlanMapper.selectAll();
    else
        userMobilePlans = userMobilePlanMapper.selectByMod(shardIndex,shardTotal);
    
    System.out.println("处理任务数量:"+userMobilePlans.size());
    Long startTime = System.currentTimeMillis();
    userMobilePlans.forEach(item->
        try 
            TimeUnit.MILLISECONDS.sleep(10);
         catch (InterruptedException e) 
            e.printStackTrace();
        
    );
    System.out.println("任务结束时间:"+new Date());
    System.out.println("任务耗时:"+(System.currentTimeMillis()-startTime)+"毫秒");

任务设置

 

 

分布式任务调度平台XXL-JOB快速搭建教程

1. XXL-JOB简介

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。它的有两个核心模块,一个模块叫做调度中心,另外一个模块叫做执行器,它把任务调度和任务执行分成两个部分。这样调度模块只需要负责任务的调度属性,触发调度信号。执行模块只需要接收调度信号,去执行具体的业务逻辑,两者可以各自的进行扩容和缩容。图1是一张来自官方的架构图。

技术图片

2. XXL-JOB搭建

既然是一个分布式调度平台,肯定会有一个调度中心,当然执行器(被调度者)也是必不可少的,可以参考架构图。所以,使用xxl-job搭建一个demo,也必须有两个端,下面本文分别从准备工作、搭建“调度中心”、搭建“执行器”三个部分进行说明。

2.1 准备工作

2.1.1 下载源码

源码地址:https://github.com/xuxueli/xxl-job

我使用的源码是2.2.0版本,这是目前最新的release版本。

源码包含了文档(数据库初始化脚本、官方文档、架构图等)、调度中心源码、核心core、各个版本的执行器源码。如图2所示:

技术图片

2.1.2 数据库准备
数据库脚本在doc路径下,将其执行之后可以创建一个数据库,如图3所示:

技术图片

2.2 搭建调度中心

2.2.1 配置调度中心

将数据库连接信息和报警信息配置成自己的,配置文件如下:

### web
server.port=8080
server.servlet.context-path=/xxl-job-admin

### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false

### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/

### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########

### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model

### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=root
spring.datasource.password=123456
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1

### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

### xxl-job, access token
xxl.job.accessToken=

### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN

## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100

### xxl-job, log retention days
xxl.job.logretentiondays=30

2.2.2 启动调度中心

在IDEA里面直接运行,如果使用的是macOS系统的话,可能会出现错误:Failed to create parent directories for [/data/applogs/xxl-job/xxl-job-admin.log],如图4所示:

技术图片

解决办法是:将logback.xml中的“/data/applogs/xxl-job/xxl-job-admin.log”改为“./data/applogs/xxl-job/xxl-job-admin.log”,如图5所示。后续在测试运行的时候,执行器端会抛出类似异常,用同样的方式可以解决。

技术图片

启动之后浏览器访问http://localhost:8080/xxl-job-admin,使用默认的用户名(admin)和密码(123456)登陆之后,可以看到如图6所示页面:

技术图片

2.3 搭建“执行器”

2.3.1 新建执行器项目

使用IDEA新建一个Spring Boot项目:xxl-job-executor

技术图片

2.3.2 添加相关依赖和配置执行器

Maven依赖:

<dependency>
  <groupId>com.xuxueli</groupId>
  <artifactId>xxl-job-core</artifactId>
  <version>2.2.0</version>
</dependency>

主要需要配置xxl-job的调度中心地址信息、xxl-job执行器相关信息。配置文件如下:

# web port
server.port=8081
# no web
#spring.main.web-environment=false

# log config
logging.config=classpath:logback.xml

### xxl-job admin address list, such as "http://address" or "http://address01,http://address02"
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin

### xxl-job, access token
xxl.job.accessToken=

### xxl-job executor appname
xxl.job.executor.appname=xxl-job-executor-test
### xxl-job executor registry-address: default use address to registry , otherwise use ip:port if address is null
xxl.job.executor.address=
### xxl-job executor server-info
xxl.job.executor.ip=
xxl.job.executor.port=9999
### xxl-job executor log-path
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### xxl-job executor log-retention-days
xxl.job.executor.logretentiondays=30

还要创建一个XxlJobConfig.java配置执行器。代码如下:

@Configuration
public class XxlJobConfig {
    private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);

    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;

    @Value("${xxl.job.accessToken}")
    private String accessToken;

    @Value("${xxl.job.executor.appname}")
    private String appname;

    @Value("${xxl.job.executor.address}")
    private String address;

    @Value("${xxl.job.executor.ip}")
    private String ip;

    @Value("${xxl.job.executor.port}")
    private int port;

    @Value("${xxl.job.executor.logpath}")
    private String logPath;

    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;

    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        logger.info(">>>>>>>>>>> xxl-job config init.");
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);

        return xxlJobSpringExecutor;
    }
}

当然还要添加logback.xml文件。

2.3.3 编写执行器

  1. 在Spring Bean实例中,开发Job方法,方式格式要求为 "public ReturnT execute(String param)"
  2. 为Job方法添加注解 "@XxlJob(value="自定义jobhandler名称", init = "JobHandler初始化方法", destroy = "JobHandler销毁方法")",注解value值对应的是调度中心新建任务的JobHandler属性的值。之前的2.1.0版本中不支持在方法上面添加注解,需要在类上面添加@JobHandler注解,并继承IJobHandler。
  3. 执行日志:需要通过 "XxlJobLogger.log" 打印执行日志;

代码如下:

@Component
public class TestXxlJobHandler {
    private static Logger logger = LoggerFactory.getLogger(TestXxlJobHandler.class);

    /**
     * 1、简单任务示例(Bean模式)
     */
    @XxlJob("testJobHandler")
    public ReturnT<String> demoJobHandler(String param) throws Exception {
        System.out.println(new Date() + "Test Xxl-Job~");
        return ReturnT.SUCCESS;
    }
}

完成之后的整个代码结构如图8所示:

技术图片

3. 测试

在本机运行调度中心和执行器。

3.1 新增执行器

在调度中心新增一个测试执行器,AppName为xxl-job-executor-test,名称为测试执行器,注册方式选择自行注册即可,如图9所示:

技术图片

3.2 新增任务

3.2.1 新增任务

新增一个任务,名称与代码中名称一致,配置为每2分钟执行一次,路由策略为一致性HASH,运行模式为BEAN,阻塞处理策略为单机串行,配置如图10所示:

技术图片

3.2.2 配置属性

详细配置属性可以参考:
● 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能; 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器, 可在 "执行器管理" 进行设置;
● 任务描述:任务的描述信息,便于任务管理;
● 路由策略:当执行器集群部署时,提供丰富的路由策略,包括;
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询):;
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
● Cron:触发任务执行的Cron表达式;
● 运行模式:
BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 "JobHandler" 属性匹配执行器中任务;
GLUE模式(Java):任务以源码方式维护在调度中心;该模式的任务实际上是一段继承自IJobHandler的Java类代码并 "groovy" 源码方式维护,它在执行器项目中运行,可使用@Resource/@Autowire注入执行器里中的其他服务;
GLUE模式(Shell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "shell" 脚本;
GLUE模式(Python):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "python" 脚本;
GLUE模式(PHP):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "php" 脚本;
GLUE模式(NodeJS):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "nodejs" 脚本;
GLUE模式(PowerShell):任务以源码方式维护在调度中心;该模式的任务实际上是一段 "PowerShell" 脚本;
● JobHandler:运行模式为 "BEAN模式" 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值;
● 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
● 子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。
● 任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
● 失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
● 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔;
● 负责人:任务的负责人;
● 执行参数:任务执行所需的参数;

3.3 启动任务测试

启动调度任务,如图11所示:

技术图片

可以查看日志或者控制台信息,运行结果满意,如图12所示:

技术图片

在控制台运行报表界面也可以看到调度和执行情况,如图13所示。图中那一次调度失败是由于执行器重启,造成了调度中心调度任务的时候发现调度地址为空,所以执行失败。

技术图片

参考文档:官方中文文档



































以上是关于[XXL-JOB] 分布式调度XXL-JOB快速上手的主要内容,如果未能解决你的问题,请参考以下文章

分布式任务调度系统XXL-Job快速入门体验

xxl-job分布式任务调度平台

分布式任务调度平台XXL-JOB

XXL-JOB分布式任务调度框架-基础入门

💤分布式任务调度:xxl-job

XXL-Job分布式任务调度框架-- 介绍和服务搭建1