并发体验:Python抓图的8种方式

Posted pythonedu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并发体验:Python抓图的8种方式相关的知识,希望对你有一定的参考价值。

本文是通过用爬虫示例来说明并发相关的多线程、多进程、协程之间的执行效率对比。

技术分享图片

假设我们现在要在网上下载图片,一个简单的方法是用 requests+BeautifulSoup。注:本文所有例子都使用python3.5)

单线程

示例 1:get_photos.py

import os
import time
import uuid

import requests
from bs4 import BeautifulSoup

def out_wrapper(func):  # 记录程序执行时间的简单装饰器
    def inner_wrapper():
        start_time = time.time()
        func()
        stop_time = time.time()
        print(Used time {}.format(stop_time-start_time))
    return inner_wrapper

def save_flag(img, filename):  # 保存图片
    path = os.path.join(down_photos, filename)
    with open(path, wb) as fp:
        fp.write(img)

def download_one(url):  # 下载一个图片
    image = requests.get(url)
    save_flag(image.content, str(uuid.uuid4()))

def user_conf():  # 返回30个图片的url
    url = https://unsplash.com/
    ret = requests.get(url)
    soup = BeautifulSoup(ret.text, "lxml")
    zzr = soup.find_all(img)
    ret = []
    num = 0
    for item in zzr:
        if item.get("src").endswith(80) and num < 30:
            num += 1
            ret.append(item.get("src"))
    return ret

@out_wrapper
def download_many():
    zzr = user_conf()
    for item in zzr:
        download_one(item)

if __name__ == __main__:
    download_many()

 

示例1进行的是顺序下载,下载30张图片的平均时间在60s左右(结果因实验环境不同而不同)。

这个代码能用但并不高效,怎么才能提高效率呢?

参考开篇的示意图,有三种方式:多进程、多线程和协程。下面我们一一说明:

我们都知道 Python 中存在 GIL(主要是Cpython),但 GIL 并不影响 IO 密集型任务,因此对于 IO 密集型任务而言,多线程更加适合(线程可以开100个,1000个而进程同时运行的数量受 CPU 核数的限制,开多了也没用)

不过,这并不妨碍我们通过实验来了解多进程。

多进程

示例2

from multiprocessing import Process
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    task_list = []
    for item in zzr:
        t = Process(target=download_one, args=(item,))
        t.start()
        task_list.append(t)
    [t.join() for t in task_list]  # 等待进程全部执行完毕(为了记录时间)

if __name__ == __main__:
    download_many()

 

本示例重用了示例1的部分代码,我们只需关注使用多进程的这部分。

笔者测试了3次(使用的机器是双核超线程,即同时只能有4个下载任务在进行),输出分别是:19.5s、17.4s和18.6s。速度提升并不是很多,也证明了多进程不适合io密集型任务。

还有一种使用多进程的方法,那就是内置模块futures中的ProcessPoolExecutor。

示例3

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    with futures.ProcessPoolExecutor(len(zzr)) as executor:
        res = executor.map(download_one, zzr)
    return len(list(res))

if __name__ == ‘__main__‘:
    download_many()

  

使用 ProcessPoolExecutor 代码简洁了不少,executor.map 和标准库中的 map用法类似。耗时和示例2相差无几。多进程就到这里,下面来体验一下多线程。

多线程

示例4

import threading
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    task_list = []
    for item in zzr:
        t = threading.Thread(target=download_one, args=(item,))
        t.start()
        task_list.append(t)
    [t.join() for t in task_list]

if __name__ == __main__:
    download_many()

 

threading 和 multiprocessing 的语法基本一样,但是速度在9s左右,相较多进程提升了1倍。

下面的示例5和示例6中分别使用内置模块 futures.ThreadPoolExecutor 中的 map 和submit、as_completed

示例5

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    with futures.ThreadPoolExecutor(len(zzr)) as executor:
        res = executor.map(download_one, zzr)
    return len(list(res))

if __name__ == __main__:
    download_many()

 

示例6:

from concurrent import futures
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    with futures.ThreadPoolExecutor(len(zzr)) as executor:
        to_do = [executor.submit(download_one, item) for item in zzr]
        ret = [future.result() for future in futures.as_completed(to_do)]
    return ret

if __name__ == __main__:
    download_many()

 

Executor.map 由于和内置的map用法相似所以更易于使用,它有个特性:返回结果的顺序与调用开始的顺序一致。不过,通常更可取的方式是,不管提交的顺序,只要有结果就获取。

为此,要把 Executor.submit 和 futures.as_completed结合起来使用。

最后到了协程,这里分别介绍 gevent 和 asyncio。

gevent

示例7

from gevent import monkey
monkey.patch_all()

import gevent
from get_photos import out_wrapper, download_one, user_conf

@out_wrapper
def download_many():
    zzr = user_conf()
    jobs = [gevent.spawn(download_one, item) for item in zzr]
    gevent.joinall(jobs)

if __name__ == __main__:
    download_many()

 

asyncio

示例8

import uuid
import asyncio

import aiohttp
from get_photos import out_wrapper, user_conf, save_flag

async def download_one(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as resp:
            save_flag(await resp.read(), str(uuid.uuid4()))

@out_wrapper
def download_many():
    urls = user_conf()
    loop = asyncio.get_event_loop()
    to_do = [download_one(url) for url in urls]
    wait_coro = asyncio.wait(to_do)
    res, _ = loop.run_until_complete(wait_coro)
    loop.close()
    return len(res)

if __name__ == __main__:
    download_many()

 

协程的耗时和多线程相差不多,区别在于协程是单线程。具体原理限于篇幅这里就不赘述了。

但是我们不得不说一下asyncio,asyncio是Python3.4加入标准库的,在3.5为其添加async和await关键字。或许对于上述多线程多进程的例子你稍加研习就能掌握,但是想要理解asyncio你不得不付出更多的时间和精力。

另外,使用线程写程序比较困难,因为调度程序任何时候都能中断线程。必须保留锁以保护程序,防止多步操作在执行的过程中中断,防止数据处于无效状态。

而协程默认会做好全方位保护,我们必须显式产出才能让程序的余下部分运行。对协程来说,无需保留锁,在多个线程之间同步操作,协程自身就会同步,因为在任意时刻只有一个协程运行。想交出控制权时,可以使用 yield 或 yield from(await) 把控制权交还调度程序。

总结

本篇文章主要是将python中并发相关的模块进行基本用法的介绍,全做抛砖引玉。而这背后相关的进程、线程、协程、阻塞io、非阻塞io、同步io、异步io、事件驱动等概念和asyncio的用法并未介绍。大家感兴趣的话可以自行google或者百度,也可以在下方留言,大家一起探讨。

python学习交流群:125240963

作者:无名小妖

转载至:https://blog.csdn.net/zV3e189oS5c0tSknrBCL/article/details/80681775











以上是关于并发体验:Python抓图的8种方式的主要内容,如果未能解决你的问题,请参考以下文章

JavaCV的摄像头实战之四:抓图

一段神奇的代码(python 2.7)网上抓图小Demo

无缝轮播图的一种方式原理

python 中画子图的两种方式

python_并发编程——多进程的第二种启动方式

基于FFmpeg的视频播放器之十三:抓图