对于Python的GIL锁理解

Posted xufat

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了对于Python的GIL锁理解相关的知识,希望对你有一定的参考价值。

GIL是什么

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL

那么CPython实现中的GIL又是什么呢?GIL全称Global Interpreter Lock.

为什么会有GIL

由于物理上得限制,各CPU厂商在核心频率上的比赛已经被多核所取代。为了更有效的利用多核处理器的性能,就出现了多线程的编程方式,而随之带来的就是线程间数据一致性和状态同步的困难。即使在CPU内部的Cache也不例外,为了有效解决多份缓存之间的数据同步时各厂商花费了不少心思,也不可避免的带来了一定的性能损失。

Python当然也逃不开,为了利用多核,Python开始支持多线程。而解决多线程之间数据完整性和状态同步,即数据安全,最简单方法自然就是加锁。 于是有了GIL这把超级大锁,而当越来越多的代码库开发者接受了这种设定后,他们开始大量依赖这种特性(即默认python内部对象是thread-safe的,无需在实现时考虑额外的内存锁和同步操作)。

慢慢的这种实现方式被发现是蛋疼且低效的。但当大家试图去拆分和去除GIL的时候,发现大量库代码开发者已经重度依赖GIL而非常难以去除了。有多难?做个类比,像MySQL这样的“小项目”为了把Buffer Pool Mutex这把大锁拆分成各个小锁也花了从5.5到5.6再到5.7多个大版为期近5年的时间,并且仍在继续。MySQL这个背后有公司支持且有固定开发团队的产品走的如此艰难,那又更何况Python这样核心开发和代码贡献者高度社区化的团队呢?

所以简单的说GIL的存在更多的是历史原因。如果推到重来,多线程的问题依然还是要面对,但是至少会比目前GIL这种方式会更优雅。

GIL的影响

从上文的介绍和官方的定义来看,GIL无疑就是一把全局排他锁。毫无疑问全局锁的存在会对多线程的效率有不小影响。甚至就几乎等于Python是个单线程的程序

因为GIL,python只有一个GIL,运行python时,就要拿到这个锁才能执行,在遇到I/O 操作时会释放这把锁。
在Python2中,如果是纯计算的程序,没有 I/O 操作,解释器会每隔100次操作就释放这把锁,让别的线程有机会 执行(这个次数可以通sys.setcheckinterval
来调整)同一时间只会有一个获得GIL线程在跑,其他线程都处于等待状态
1、如果是CPU密集型代码(循环、计算等),由于计算工作量多和大,计算很快就会达到100,然后触发GIL的释放与在竞争,多个线程来回切换损耗资源,所以在多线程遇到CPU密集型代码时,单线程会比多线程的快。
2、如果是IO密集型代码(文件处理、网络爬虫),开启多线程实际上是并发(不是并行),IO操作会进行IO等待,线程A等待时,自动切换到线程B,这样就提升了效率,比单线程快很多

而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低 

“python下想要充分利用多核CPU,就用多进程”,原因是什么呢?

原因是:每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

总结

Python GIL其实是功能和性能之间权衡后的产物,它尤其存在的合理性,也有较难改变的客观因素。从本分的分析中,我们可以做以下一些简单的总结:

  1. 因为GIL的存在,只有IO密集型场景下的多线程会得到较好的性能,而在CPU密集型(计算密集型)或者高并发场景下,使用多进程效率会更快。
  2. GIL在较长一段时间内将会继续存在,但是会不断对其进行改进。

以上是关于对于Python的GIL锁理解的主要内容,如果未能解决你的问题,请参考以下文章

GIL(全局解释器锁)

Python入门学习-DAY36-GIL全局解释器锁死锁现象与递归锁信号量Event事件线程queue

GIL线程全局锁 协程

python 多线程锁机制

python GIL锁

python网络编程--线程(锁,GIL锁,守护线程)