Python 数据分析:Pandas 缺省值的判断
Posted Yxh_blogs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 数据分析:Pandas 缺省值的判断相关的知识,希望对你有一定的参考价值。
Python 数据分析:Pandas 缺省值的判断
背景
我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT。但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错。因此,我们就需要处理 Pandas 的缺省值。
样本数据
id name password sn sex age amount content remark login_date login_at created_at
0 1 123456789.0 NaN NaN NaN 20 NaN NaN NaN NaN NaT 2019-08-10 10:00:00
1 2 NaN NaN NaN NaN 20 NaN NaN NaN NaN NaT 2019-08-10 10:00:00
判断缺省值
如果 column
是缺省值,则统一处理为 None。
def judge_null(column):
if pd.isnull(column):
return None
return column
处理缺省值
按列处理缺省值。
df['id'] = df.apply(lambda row: judge_null(row['id']), axis=1)
df['name'] = df.apply(lambda row: judge_null(row['name']), axis=1)
df['password'] = df.apply(lambda row: judge_null(row['password']), axis=1)
df['sn'] = df.apply(lambda row: judge_null(row['sn']), axis=1)
df['sex'] = df.apply(lambda row: judge_null(row['sex']), axis=1)
df['age'] = df.apply(lambda row: judge_null(row['age']), axis=1)
df['amount'] = df.apply(lambda row: judge_null(row['amount']), axis=1)
df['content'] = df.apply(lambda row: judge_null(row['content']), axis=1)
df['remark'] = df.apply(lambda row: judge_null(row['remark']), axis=1)
df['login_date'] = df.apply(lambda row: judge_null(row['login_date']), axis=1)
df['login_at'] = df.apply(lambda row: judge_null(row['login_at']), axis=1)
df['created_at'] = df.apply(lambda row: judge_null(row['created_at']), axis=1)
处理完成之后的数据
id name password sn sex age amount content remark login_date login_at created_at
0 1 123456789.0 None None None 20 None None None None None 2019-08-10 10:00:00
1 2 None None None None 20 None None None None None 2019-08-10 10:00:00
补充
设置显示所有的行、列及值得长度。
# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
pd.set_option('max_colwidth', 100)
对应的数据库建表语句
create table test
(
id int(10) not null primary key,
name varchar(32) null,
password char(10) null,
sn bigint null,
sex tinyint(1) null,
age int(5) null,
amount decimal(10, 2) null,
content text null,
remark json null,
login_date date null,
login_at datetime null,
created_at timestamp null
);
以上是关于Python 数据分析:Pandas 缺省值的判断的主要内容,如果未能解决你的问题,请参考以下文章
pandas学习(常用数学统计方法总结读取或保存数据缺省值和异常值处理)
100天精通Python(数据分析篇)——第68天:Pandas数据清洗函数大全(判断缺失删除空值填补空值替换元素分割元素)