Python之NumPy(axis=0/1/2...)的透彻理解

Posted cup_leo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之NumPy(axis=0/1/2...)的透彻理解相关的知识,希望对你有一定的参考价值。

https://blog.csdn.net/sky_kkk/article/details/79725646

 

numpy中axis取值的说明
首先对numpy中axis取值进行说明:一维数组时axis=0,二维数组时axis=0,1,维数越高,则axis可取的值越大,数组n维时,axis=0,1,…,n。为了方便下面的理解,我们这样看待:在numpy中数组都有着[]标记,则axis=0对应着最外层的[],axis=1对应第二外层的[],以此类推,axis=n对应第n外层的[]。
下面开始从axis=0,axis=1这两个例子开始,深入透彻的理解numpy中axis的用法。
axis = 0表示对最外层[]里的最大单位块做块与块之间的运算,同时移除最外层[]:
a= np.array([1,2,3])   
a.sum(axis = 0)
>>>6
123
因为只有一层[],所以直接对这一层里的最大单位快1,2,3做运算;
做完加法后本应是[6],但是移除最外层[]后,[]不存在了,所以返回的是6。
a= np.array([[1,2],[3,4]]) 
a.sum(axis = 0)
>>>array([4, 6])
123
有两层[],最外层[]里的最大单位块分别为[1,2],[3,4],对这两个单位块做块与块之间的运算,[1,2]+[3,4] = [4, 6];
做完加法后本应是[[4, 6]],但是移除最外层[]后,原来的两层[]变成一层[],所以返回结果为 [4, 6]。
np.array([[[1,2],[3,4]],[[11,12],[13,14]]])
a.sum(axis = 0)
>>>array([[12, 14], [16, 18]])
123
有三层[],最外层[]里的最大单位块分别为[[1,2],[3,4]],[[11,12],[13,14]],对这两个单位块做块与块之间的运算,[[1,2],[3,4]]  +  [[11,12],[13,14]]  = [[12, 14], [16, 18]];
做完加法后本应是[[[12, 14], [16, 18]]],但是移除最外层[]后,原来的三层[]变成两层[],所以返回结果为[[12, 14], [16, 18]];
axis= 1表示对第二外层[]里的最大单位块做块与块之间的运算,同时移除第二外层[]:
a= np.array([1,2,3])   
a.sum(axis = 1)
>>>ValueError: ‘axis‘ entry is out of bounds
123
因为只有一层[],axis取值只有一个,为0.
a= np.array([[1,2],[3,4]]) 
a.sum(axis = 1)
>>>array([3, 7])
123
有两层[],第二外层[]里的最大单位块有两组(因为有两个第二外层[]),第一组是1,2,第二组是3,4,分别对这两个单位块做块与块之间的运算,第一组结果为1+2=3,第二组结果为3+4=7;
做完加法后本应是[[3],[7]],但是**移除第二外层[]**后,原来的两层[]变成一层[],所以返回结果为[3, 7]。
np.array([[[1,2],[3,4]],[[11,12],[13,14]]])
a.sum(axis = 1)
>>>array([[ 4,  6], [24, 26]])
123
有三层[],第二外层[]里的最大单位块有两组(因为有两个第二外层[]),第一组是[1,2],[3,4],第二组是[11,12],[13,14],分别对这两个单位块做块与块之间的运算,第一组结果为[1,2]+[3,4] = [ 4,  6],第二组结果为[11,12]+[13,14] = [24, 26]
做完加法后本应是[[[ 4,  6]], [[24, 26]]],但是**移除第二外层[]**后,原来的三层[]变成两层[],所以返回结果为[[ 4,  6], [24, 26]]
axis = 3,4,5也如此分析
看懂了这些说明,相信你对axis已经有了深入的理解,以后再也不用怕高维数组关于axis的运算了!

以上是关于Python之NumPy(axis=0/1/2...)的透彻理解的主要内容,如果未能解决你的问题,请参考以下文章

Python之NumPy(axis=0 与axis=1)区分

numpy运算简介

numpy

Python Numpy 数组扩展 repeat和tile

Python中numpy.apply_along_axis()函数的用法

numpy之sum