python 生成器和迭代器
Posted 朝阳的向日葵
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 生成器和迭代器相关的知识,希望对你有一定的参考价值。
列表生成器
首先举个例子
现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢?
方法一(简单):
1
2
3
4
5
6
7
8
9
|
info = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] b = [] # for index,i in enumerate(info): # print(i+1) # b.append(i+1) # print(b) for index,i in enumerate (info): info[index] + = 1 print (info) |
方法二(一般):
1
2
3
4
5
|
info = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] a = map ( lambda x:x + 1 ,info) print (a) for i in a: print (i) |
方法三(高级):
1
2
3
|
info = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] a = [i + 1 for i in range ( 10 )] print (a) |
生成器
什么是生成器?
通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator
生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。
生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用,但是,不同于一般的函数会一次性返回包括了所有数值的数组,生成器一次只能产生一个值,这样消耗的内存数量将大大减小,而且允许调用函数可以很快的处理前几个返回值,因此生成器看起来像是一个函数,但是表现得却像是迭代器
python中的生成器
要创建一个generator,有很多种方法,第一种方法很简单,只有把一个列表生成式的[]中括号改为()小括号,就创建一个generator
举例如下:
1
2
3
4
5
6
7
8
9
10
|
#列表生成式 lis = [x * x for x in range ( 10 )] print (lis) #生成器 generator_ex = (x * x for x in range ( 10 )) print (generator_ex) 结果: [ 0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 ] <generator object <genexpr> at 0x000002A4CBF9EBA0 > |
那么创建lis和generator_ex,的区别是什么呢?从表面看就是[ ]和(),但是结果却不一样,一个打印出来是列表(因为是列表生成式),而第二个打印出来却是<generator object <genexpr> at 0x000002A4CBF9EBA0>,那么如何打印出来generator_ex的每一个元素呢?
如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#生成器 generator_ex = (x * x for x in range ( 10 )) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) 结果: 0 1 4 9 16 25 36 49 64 81 Traceback (most recent call last): File "列表生成式.py" , line 42 , in <module> print ( next (generator_ex)) StopIteration |
大家可以看到,generator保存的是算法,每次调用next(generaotr_ex)就计算出他的下一个元素的值,直到计算出最后一个元素,没有更多的元素时,抛出StopIteration的错误,而且上面这样不断调用是一个不好的习惯,正确的方法是使用for循环,因为generator也是可迭代对象:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
#生成器 generator_ex = (x * x for x in range ( 10 )) for i in generator_ex: print (i) 结果: 0 1 4 9 16 25 36 49 64 81 |
所以我们创建一个generator后,基本上永远不会调用next(),而是通过for循环来迭代,并且不需要关心StopIteration的错误,generator非常强大,如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
比如著名的斐波那契数列,除第一个和第二个数外,任何一个数都可以由前两个相加得到:
1,1,2,3,5,8,12,21,34.....
斐波那契数列用列表生成式写不出来,但是,用函数把它打印出来却狠容易:
1
2
3
4
5
6
7
8
9
10
|
#fibonacci数列 def fib( max ): n,a,b = 0 , 0 , 1 while n < max : a,b = b,a + b n = n + 1 return ‘done‘ a = fib( 10 ) print (fib( 10 )) |
a,b = b ,a+b 其实相当于 t =a+b ,a =b ,b =t ,所以不必写显示写出临时变量t,就可以输出斐波那契数列的前N个数字。上面输出的结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
1 1 2 3 5 8 13 21 34 55 1 1 2 3 5 8 13 21 34 55 done |
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说上面的函数也可以用generator来实现,上面我们发现,print(b)每次函数运行都要打印,占内存,所以为了不占内存,我们也可以使用生成器,这里叫yield。如下:
1
2
3
4
5
6
7
8
9
10
|
def fib( max ): n,a,b = 0 , 0 , 1 while n < max : yield b a,b = b,a + b n = n + 1 return ‘done‘ a = fib( 10 ) print (fib( 10 )) |
但是返回的不再是一个值,而是一个生成器,和上面的例子一样,大家可以看一下结果:
1
|
<generator object fib at 0x000001C03AC34FC0 > |
那么这样就不占内存了,这里说一下generator和函数的执行流程,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时候从上次的返回yield语句处急需执行,也就是用多少,取多少,不占内存。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
def fib( max ): n,a,b = 0 , 0 , 1 while n < max : yield b a,b = b,a + b n = n + 1 return ‘done‘ a = fib( 10 ) print (fib( 10 )) print (a.__next__()) print (a.__next__()) print (a.__next__()) print ( "可以顺便干其他事情" ) print (a.__next__()) print (a.__next__()) 结果: <generator object fib at 0x0000023A21A34FC0 > 1 1 2 可以顺便干其他事情 3 5 |
在上面fib的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def fib( max ): n,a,b = 0 , 0 , 1 while n < max : yield b a,b = b,a + b n = n + 1 return ‘done‘ for i in fib( 6 ): print (i) 结果: 1 1 2 3 5 8 |
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果拿不到返回值,那么就会报错,所以为了不让报错,就要进行异常处理,拿到返回值,如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
def fib( max ): n,a,b = 0 , 0 , 1 while n < max : yield b a,b = b,a + b n = n + 1 return ‘done‘ g = fib( 6 ) while True : try : x = next (g) print ( ‘generator: ‘ ,x) except StopIteration as e: print ( "生成器返回值:" ,e.value) break 结果: generator: 1 generator: 1 generator: 2 generator: 3 generator: 5 generator: 8 生成器返回值: done |
还可以通过yield实现在单线程的情况下实现并发运算的效果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
import time def consumer(name): print ( "%s 准备学习啦!" % name) while True : lesson = yield print ( "开始[%s]了,[%s]老师来讲课了!" % (lesson,name)) def producer(name): c = consumer( ‘A‘ ) c2 = consumer( ‘B‘ ) c.__next__() c2.__next__() print ( "同学们开始上课 了!" ) for i in range ( 10 ): time.sleep( 1 ) print ( "到了两个同学!" ) c.send(i) c2.send(i) 结果: A 准备学习啦! B 准备学习啦! 同学们开始上课 了! 到了两个同学! 开始[ 0 ]了,[A]老师来讲课了! 开始[ 0 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 1 ]了,[A]老师来讲课了! 开始[ 1 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 2 ]了,[A]老师来讲课了! 开始[ 2 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 3 ]了,[A]老师来讲课了! 开始[ 3 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 4 ]了,[A]老师来讲课了! 开始[ 4 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 5 ]了,[A]老师来讲课了! 开始[ 5 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 6 ]了,[A]老师来讲课了! 开始[ 6 ]了,[B]老师来讲课了! 到了两个同学! |
由上面的例子我么可以发现,python提供了两种基本的方式
生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始
生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果
——生成器函数
为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起急需执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行,生成器和迭代协议是密切相关的,可迭代的对象都有一个__next__()__成员方法,这个方法要么返回迭代的下一项,要买引起异常结束迭代。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
# 函数有了yield之后,函数名+()就变成了生成器 # return在生成器中代表生成器的中止,直接报错 # next的作用是唤醒并继续执行 # send的作用是唤醒并继续执行,发送一个信息到生成器内部 ‘‘‘生成器‘‘‘ def create_counter(n): print ( "create_counter" ) while True : yield n print ( "increment n" ) n + = 1 gen = create_counter( 2 ) print (gen) print ( next (gen)) print ( next (gen)) 结果: <generator object create_counter at 0x0000023A1694A938 > create_counter 2 increment n 3 Process finished with exit code 0 |
——生成器表达式
生成器表达式来源于迭代和列表解析的组合,生成器和列表解析类似,但是它使用尖括号而不是方括号
1
2
3
4
5
6
7
8
9
10
|
>>> # 列表解析生成列表 >>> [ x * * 3 for x in range ( 5 )] [ 0 , 1 , 8 , 27 , 64 ] >>> >>> # 生成器表达式 >>> (x * * 3 for x in range ( 5 )) <generator object <genexpr> at 0x000000000315F678 > >>> # 两者之间转换 >>> list (x * * 3 for x in range ( 5 )) [ 0 , 1 , 8 , 27 , 64 ] |
一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。
迭代器(迭代就是循环)
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list,tuple,dict,set,str等
一类是generator,包括生成器和带yield的generator function
这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable
可以使用isinstance()判断一个对象是否为可Iterable对象
1
2
3
4
5
6
7
8
9
10
11
|
>>> from collections import Iterable >>> isinstance ([], Iterable) True >>> isinstance ({}, Iterable) True >>> isinstance ( ‘abc‘ , Iterable) True >>> isinstance ((x for x in range ( 10 )), Iterable) True >>> isinstance ( 100 , Iterable) False |
而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
所以这里将一下迭代器
可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:
1
2
3
4
5
6
7
8
9
|
>>> from collections import Iterator >>> isinstance ((x for x in range ( 10 )), Iterator) True >>> isinstance ([], Iterator) False >>> isinstance ({}, Iterator) False >>> isinstance ( ‘abc‘ , Iterator) False |
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable(可迭代对象)
,却不是Iterator(迭代器)
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
1
2
3
4
|
>>> isinstance ( iter ([]), Iterator) True >>> isinstance ( iter ( ‘abc‘ ), Iterator) True |
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
判断下列数据类型是可迭代对象or迭代器
1
2
3
4
5
6
|
s = ‘hello‘ l = [ 1 , 2 , 3 , 4 ] t = ( 1 , 2 , 3 ) d = { ‘a‘ : 1 } set = { 1 , 2 , 3 } f = open ( ‘a.txt‘ ) |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
s = ‘hello‘ #字符串是可迭代对象,但不是迭代器 l = [ 1 , 2 , 3 , 4 ] #列表是可迭代对象,但不是迭代器 t = ( 1 , 2 , 3 ) #元组是可迭代对象,但不是迭代器 d = { ‘a‘ : 1 } #字典是可迭代对象,但不是迭代器 set = { 1 , 2 , 3 } #集合是可迭代对象,但不是迭代器 f = open ( ‘test.txt‘ ) #文件是可迭代对象,但不是迭代器 #如何判断是可迭代对象,只有__iter__方法,执行该方法得到的迭代器对象。 # 及可迭代对象通过__iter__转成迭代器对象 from collections import Iterator #迭代器 from collections import Iterable #可迭代对象 print ( isinstance (s,Iterator)) #判断是不是迭代器 print ( isinstance (s,Iterable)) #判断是不是可迭代对象 #把可迭代对象转换为迭代器 print ( isinstance ( iter (s),Iterator)) |
小结:
- 凡是可作用于
for
循环的对象都是Iterable
类型; - 凡是可作用于
next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列; - 集合数据类型如
list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python3的for
循环本质上就是通过不断调用next()
函数实现的,例如:
1
2
|
for x in [ 1 , 2 , 3 , 4 , 5 ]: pass |
实际上完全等价于
1
2
3
4
5
6
7
8
9
10
|
# 首先获得Iterator对象: it = iter ([ 1 , 2 , 3 , 4 , 5 ]) # 循环: while True : try : # 获得下一个值: x = next (it) except StopIteration: # 遇到StopIteration就退出循环 break |
以上是关于python 生成器和迭代器的主要内容,如果未能解决你的问题,请参考以下文章