『Python CoolBook』Cython

Posted 叠加态的猫

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了『Python CoolBook』Cython相关的知识,希望对你有一定的参考价值。

github地址

使用Cython导入库的话,需要一下几个文件:

.c:C函数源码

.h:C函数头

.pxd:Cython函数头

.pyx:包装函数

setup.py:python

本节示例.c和.h文件同『Python CoolBook』使用ctypes访问C代码_下_demo进阶即存在sample.c和sample.h两个源文件。

cdef:Cython函数,只能在Cython中调用,python识别不了这个定义后面的主体,而且它后面也不仅仅接函数,class等均可,def定义的函数可以被Python识别,在pxd和pyx中均可使用。

csample.pxd:Cython头文件

.pxd文件仅仅只包含C定义(类似.h文件),即相当于将.h文件包装为Cython的头。注意,.pxd仅仅是声明定义,我们此时并未对函数做包装,这个工作在.pyx中完成。

# csample.pxd
#
# Declarations of "external" C functions and structures

cdef extern from "sample.h":
    int gcd(int, int)
    bint in_mandel(double, double, int)
    int divide(int, int, int *)
    double avg(double *, int) nogil

    ctypedef struct Point:
         double x
         double y

    double distance(Point *, Point *)

 为例对比,我们给出sample.h文件如下:

#ifndef __SAMPLE_H__
#define __SAMPLE_H__
#include <math.h>

#ifdef __cplusplus
extern "C" {
#endif

int gcd(int x, int y);
int in_mandel(double x0, double y0, int n);
int divide(int a, int b, int *remainder);
double avg(double *a, int n);
    
/* A C data structure */
typedef struct Point {
    double x,y;
} Point;
    
double distance(Point *p1, Point *p2);

#ifdef __cplusplus
}
#endif
#endif

sample.pyx:Cython封装主体

程序如下,pyx文本中语法和python一致,但是却可以像C中一样指定形参类型(也可以不指定),实际上这里是最基础的包装,可以看到就是调用了csample包中的函数,我们在后文中可以看到对基本包装的加强。

# sample.pyx

# Import the low-level C declarations
cimport csample

# Import some functionality from Python and the C stdlib
from cpython.pycapsule cimport *

from libc.stdlib cimport malloc, free

# Wrappers
def gcd(unsigned int x, unsigned int y):
    return csample.gcd(x, y)

def in_mandel(x, y, unsigned int n):
    return csample.in_mandel(x, y, n)

def divide(x, y):
    cdef int rem
    quot = csample.divide(x, y, &rem)
    return quot, rem

def avg(double[:] a):
    cdef:
        int sz
        double result

    sz = a.size
    with nogil:
        result = csample.avg(<double *> &a[0], sz)
    return result

# Destructor for cleaning up Point objects
cdef del_Point(object obj):
    pt = <csample.Point *> PyCapsule_GetPointer(obj,"Point")
    free(<void *> pt)

# Create a Point object and return as a capsule
def Point(double x,double y):
    cdef csample.Point *p
    p = <csample.Point *> malloc(sizeof(csample.Point))
    if p == NULL:
        raise MemoryError("No memory to make a Point")
    p.x = x
    p.y = y
    return PyCapsule_New(<void *>p,"Point",<PyCapsule_Destructor>del_Point)

def distance(p1, p2):
    pt1 = <csample.Point *> PyCapsule_GetPointer(p1,"Point")
    pt2 = <csample.Point *> PyCapsule_GetPointer(p2,"Point")
    return csample.distance(pt1,pt2)

由于很多细节都蕴含在上面代码中,也涉及很多前面介绍过的高级特性,包括数组操作、包装隐形指针和释放GIL,所以下面逐个分析各个函数。

各种情况函数分析

gcd:简单的数字参数函数

csample.pxd 文件声明了 int gcd(int, int) 函数, sample.pyx 中的包装函数如下:

cimport csample

def gcd(unsigned int x, unsigned int y):  # <--- 无符号整形
    return csample.gcd(x,y)

无符号整型使得在运行中接收到负数会报这一行的错误,我们可以修改如下,

# def gcd(unsigned int x, unsigned int y):
#     return csample.gcd(x, y)
def gcd(int x, int y):
    if x <= 0:
        raise ValueError("x must be > 0")
    if y <= 0:
        raise ValueError("y must be > 0")
    return csample.gcd(x,y)

可以看到,这里对Python语句支持的很好。

in_mandel:返回值为0或1(布尔整形)

/* Test if (x0,y0) is in the Mandelbrot set or not */
int in_mandel(double x0, double y0, int n) {
    double x=0,y=0,xtemp;
    while (n > 0) {
        xtemp = x*x - y*y + x0;
        y = 2*x*y + y0;
        x = xtemp;
        n -= 1;
        if (x*x + y*y > 4) return 0;
    }
    return 1;
}

pxd声明可以指定函数返回类型bint:

bint in_mandel(double, double, int)

divide:形参指针对象

int divide(int a, int b, int *remainder) {
    int quot = a / b;
    *remainder = a % b;
    return quot;
}

 python没法传递一个地址,但pyx可以

def divide(x, y):
    cdef int rem
    quot = csample.divide(x, y, &rem)
    return quot, rem

在这里,rem 变量被显示的声明为一个C整型变量。 当它被传入 divide() 函数的时候,&rem 创建一个跟C一样的指向它的指针。

avg:形参数组&GIL释放

/* Average values in an array */
double avg(double *a, int n) {
    int i;
    double total = 0.0;
    for (i = 0; i < n; i++) {
        total += a[i];
    }
    return total / n;
}

 avg() 函数的代码演示了Cython更高级的特性:

def avg(double[:] a):
    cdef:
        int sz
        double result

    sz = a.size
    with nogil:
        result = csample.avg(<double *> &a[0], sz)
    return result

首先 def avg(double[:] a) 声明了 avg() 接受一个一维的双精度内存视图。 最惊奇的部分是返回的结果函数可以接受任何兼容的数组对象,包括被numpy创建的。例如:

>>> import array
>>> a = array.array(\'d\',[1,2,3])
>>> import numpy
>>> b = numpy.array([1., 2., 3.])
>>> import sample
>>> sample.avg(a)
2.0
>>> sample.avg(b)
2.0
>>>

在此包装器中,a.size&a[0] 分别引用数组元素个数和底层指针。 语法 <double *> &a[0] 教你怎样将指针转换为不同的类型。 前提是C中的 avg() 接受一个正确类型的指针。 参考下一节关于Cython内存视图的更高级讲述。

除了处理通常的数组外,avg() 的这个例子还展示了如何处理全局解释器锁。

  1. 语句 with nogil: 声明了一个不需要GIL就能执行的代码块。 在这个块中,不能有任何的普通Python对象——只能使用被声明为 cdef 的对象和函数(pxd中的)。
  2. 另外,外部函数必须现实的声明它们能不依赖GIL就能执行。 因此,在csample.pxd文件中,avg() 被声明为 double avg(double *, int) nogil .

distance、Point:结构体处理

 本节使用胶囊对象将Point对象当做隐形指针来处理,pxd中声明如下,

ctypedef struct Point:
     double x
     double y

首先,下面的导入被用来引入C函数库和Python C API中定义的函数:

from cpython.pycapsule cimport *  # <---胶囊结构函数库,直接来自Python C API
from libc.stdlib cimport malloc, free

包装如下,先建立结构体,最后以胶囊形式返回:

# Destructor for cleaning up Point objects
cdef del_Point(object obj):
    pt = <csample.Point *> PyCapsule_GetPointer(obj,"Point")  # <---胶囊结构提取指针(胶囊结构还原结构体)
    free(<void *> pt)

# Create a Point object and return as a capsule
def Point(double x,double y):
    cdef csample.Point *p
    p = <csample.Point *> malloc(sizeof(csample.Point))
    if p == NULL:
        raise MemoryError("No memory to make a Point")
    p.x = x
    p.y = y
    return PyCapsule_New(<void *>p,"Point",<PyCapsule_Destructor>del_Point)

函数 del_Point()Point() 使用这个功能来创建一个胶囊对象, 它会包装一个 Point  * 指针。

cdef  del_Point()del_Point() 声明为一个函数, 只能通过Cython访问,而不能从Python中访问。 因此,这个函数对外部是不可见的——它被用来当做一个回调函数来清理胶囊分配的内存。 函数调用比如 PyCapsule_New()PyCapsule_GetPointer() 直接来自Python C API以同样的方式被使用。

distance 函数从 Point() 创建的胶囊对象中提取指针,

def distance(p1, p2):
    pt1 = <csample.Point *> PyCapsule_GetPointer(p1,"Point")
    pt2 = <csample.Point *> PyCapsule_GetPointer(p2,"Point")
    return csample.distance(pt1,pt2)

这里要注意的是你不需要担心异常处理。 如果一个错误的对象被传进来,PyCapsule_GetPointer() 会抛出一个异常, 但是Cython已经知道怎么查找到它,并将它从 distance() 传递出去。

处理Point结构体一个缺点是它的实现是不可见的。 你不能访问任何属性来查看它的内部。 这里有另外一种方法去包装它,就是定义一个扩展类型,如下所示:

# sample.pyx

cimport csample
from libc.stdlib cimport malloc, free
...

cdef class Point:
    cdef csample.Point *_c_point  # 声明Point结构体
    def __cinit__(self, double x, double y):  # 初始化过程就是建立一个结构体
        self._c_point = <csample.Point *> malloc(sizeof(csample.Point))
        self._c_point.x = x
        self._c_point.y = y

    def __dealloc__(self):
        free(self._c_point)

    property x:  # 方法修饰为属性
        def __get__(self):
            return self._c_point.x
        def __set__(self, value):
            self._c_point.x = value

    property y:  # 方法修饰为属性
        def __get__(self):
            return self._c_point.y
        def __set__(self, value):
            self._c_point.y = value

def distance(Point p1, Point p2):
    return csample.distance(p1._c_point, p2._c_point)

在这里,cdif类 Point 将Point声明为一个扩展类型。 类属性 cdef csample.Point *_c_point 声明了一个实例变量, 拥有一个指向底层Point结构体的指针。 __cinit__()__dealloc__() 方法通过 malloc()free() 创建并销毁底层C结构体。 x和y属性的声明让你获取和设置底层结构体的属性值。 distance() 的包装器还可以被修改,使得它能接受 Point 扩展类型实例作为参数, 而传递底层指针给C函数。

做了这个改变后,你会发现操作Point对象就显得更加自然了:

>>> import sample
>>> p1 = sample.Point(2,3)
>>> p2 = sample.Point(4,5)
>>> p1
<sample.Point object at 0x100447288>
>>> p2
<sample.Point object at 0x1004472a0>
>>> p1.x
2.0
>>> p1.y
3.0
>>> sample.distance(p1,p2)
2.8284271247461903
>>>

 setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [
    Extension(\'sample\',

              [\'sample.pyx\'],
              libraries=[\'sample\'],
              library_dirs=[\'.\'])]
setup(
  name = \'Sample extension module\',
  cmdclass = {\'build_ext\': build_ext},
  ext_modules = ext_modules
)

编译运行

python setup.py build_ext --inplace

 注意,编译完成后sample.c文件就会被修改添加很多语句,所以记得备份。

以上是关于『Python CoolBook』Cython的主要内容,如果未能解决你的问题,请参考以下文章

『Python CoolBook』使用ctypes访问C代码_下

『Python CoolBook』C扩展库_其六_从C语言中调用Python代码

『Python CoolBook』C扩展库_其六_线程

『Python CoolBook』ctype读取Linux动态库so文件

『Python CoolBook』数据结构和算法_字典比较&字典和集合

『Python CoolBook』C扩展库_其五_C语言层面Python库之间调用API(待续)