python多进程
Posted Quartzite
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python多进程相关的知识,希望对你有一定的参考价值。
操作系统进程
Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID。
进程是程序在计算机上的一次执行活动。当你运行一个程序,你就启动了一个进程。显然,程序是死的(静态的),进程是活的(动态的)。进程可以分为系统进程和用户进程。凡是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身。所有由你启动的进程都是用户进程。
通俗地讲,在操作系统的管理下,所有正在运行的进程轮流使用CPU,每个进程允许占用CPU的时间非常短(比如10毫秒),这样用户根本感觉不出来CPU是在轮流为多个进程服务,就好象所有的进程都在不间断地运行一样。但实际上在任何一个时间内有且仅有一个进程占有CPU。
多进程
多进程和多线程的区别
多线程使用的是cpu的一个核,适合io密集型。
多进程使用的是cpu的多个核,适合运算密集型。
Multiprocessing支持子进程,通信,共享数据,执行不同形式的同步,提供了Process,Pipe, Lock等组件。
Process
创建一个Process对象
p = multiprocessing.Process(target=worker_1, args=(2, ))
target = 函数名字
args = 函数需要的参数,以tuple的形式传入
注意: 单个元素的tuple的表现形式(元素,)有一个逗号
multprocessing用到的两个方法
cpu_count() 统计cpu总数
active_children() 获得所有子进程
Process的对象常用方法
is_alive() 判断进程是否存活
run() 启动进程
start() 启动进程,会自动调用run方法,这个常用
join(timeout) 等待进程结束或者直到超时
Process的常用属性
name 进程名字
pid 进程的pid
相关代码示例
import multiprocessing import time def worker(args, interval): print("start worker {0}".format(args)) time.sleep(interval) print("end worker {0}".format(args)) def main(): print("start main") p1 = multiprocessing.Process(target=worker, args=(1, 1)) p2 = multiprocessing.Process(target=worker, args=(2, 2)) p3 = multiprocessing.Process(target=worker, args=(3, 3)) p1.start() p2.start() p3.start() print("end main") if __name__ == ‘__main__‘: main() 结果: start main end main start worker 1 start worker 3 start worker 2 end worker 1 end worker 2 end worker 3
p = multiprocessing.Process(target=, args=)
target 指定的是当进程执行时,需要执行的函数
args 是当进程执行时,需要给函数传入的参数
注意: args必须是一个tuple, 特别是当函数需要传入一个参数时 (1,)
p 代表的是一个多进程
p.is_alive() 判断进程是否存活
p.run() 启动进程
p.start() 启动进程,他会自动调用run方法,推荐使用start
p.join(timeout) 等待子进程结束或者到超时时间后再继续往下执行
p.terminate() 强制子进程退出
p.name 进程的名字
p.pid 进程的pid
import multiprocessing import time def worker(args, interval): print("start worker {0}".format(args)) time.sleep(interval) print("end worker {0}".format(args)) def main(): print("start main") p1 = multiprocessing.Process(target=worker, args=(1, 1)) p2 = multiprocessing.Process(target=worker, args=(2, 2)) p3 = multiprocessing.Process(target=worker, args=(3, 3)) p1.start() p1.join(timeout=0.5) p2.start() p3.start() print("the number of CPU is: {0}".format(multiprocessing.cpu_count())) for p in multiprocessing.active_children(): print("The name of active children is: {0}, pid is: {1} is alive".format(p.name, p.pid)) print("end main") if __name__ == ‘__main__‘: main() 结果: start main start worker 1 the number of CPU is: 4 The name of active children is: Process-3, pid is: 9056 is alive The name of active children is: Process-2, pid is: 5844 is alive The name of active children is: Process-1, pid is: 8428 is alive end main start worker 2 start worker 3 end worker 1 end worker 2 end worker 3
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。
Lock组件
当我们用多进程来读写文件的时候,如果一个进程是写文件,一个进程是读文件,如果两个文件同时进行,肯定是不行的,必须是文件写结束以后,才可以进行读操作。或者是多个进程在共享一些资源的时候,同时只能有一个进程进行访问,那就要有一个锁机制进行控制。
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。主要用到了lock.acquire() 和lock.release()
import time import multiprocessing def add1(lock, value, number): with lock: print("start add1 number= {0}".format(number)) for i in range(1, 5): number += value time.sleep(0.3) print("number = {0}".format(number)) def add3(lock, value, number): lock.acquire() print("start add3 number= {0}".format(number)) try: for i in range(1, 5): number += value time.sleep(0.3) print("number = {0}".format(number)) except Exception as e: raise e finally: lock.release() pass if __name__ == ‘__main__‘: print("start main") number = 0 lock = multiprocessing.Lock() p1 = multiprocessing.Process(target=add1, args=(lock, 1, number)) p3 = multiprocessing.Process(target=add3, args=(lock, 3, number)) p1.start() p3.start() print("end main") 结果: start main end main start add3 number= 0 number = 3 number = 6 number = 9 number = 12 start add1 number= 0 number = 1 number = 2 number = 3 number = 4
共享内存
python的multiprocessing模块也给我们提供了共享内存的操作。
一般的变量在进程之间是没法进行通讯的,multiprocessing给我们提供了Value和Array模块,他们可以在不通的进程中共同使用,Value 和 Array 都需要设置其中存放值的类型,d 是 double 类型,i 是 int 类型。
import time import multiprocessing from multiprocessing import Value, Array, Manager def add1(value, number): print("start add1 number= {0}".format(number.value)) for i in range(1, 5): number.value += value print("number = {0}".format(number.value)) def add3(value, number): print("start add3 number= {0}".format(number.value)) try: for i in range(1, 5): number.value += value print("number = {0}".format(number.value)) except Exception as e: raise e if __name__ == ‘__main__‘: print("start main") number = Value(‘d‘, 0) p1 = multiprocessing.Process(target=add1, args=(1, number)) p3 = multiprocessing.Process(target=add3, args=(3, number)) p1.start() p3.start() print("end main") 结果: start main end main start add1 number= 0.0 number = 1.0 number = 2.0 number = 3.0 number = 4.0 start add3 number= 4.0 number = 7.0 number = 10.0 number = 13.0 number = 16.0
以上是关于python多进程的主要内容,如果未能解决你的问题,请参考以下文章