深度学习--PyTorch定义Tensor以及索引和切片

Posted ssl-study

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习--PyTorch定义Tensor以及索引和切片相关的知识,希望对你有一定的参考价值。

深度学习--PyTorch定义Tensor

一、创建Tensor

1.1未初始化的方法

​ 这些方法只是开辟了空间,所附的初始值(非常大,非常小,0),后面还需要我们进行数据的存入。

  • torch.empty():返回一个没有初始化的Tensor,默认是FloatTensor类型。
#torch.empty(d1,d2,d3)函数输入的是shape 
torch.empty(2,3,5)

#tensor([[[-1.9036e-22,  6.8944e-43,  0.0000e+00,  0.0000e+00, -1.0922e-20],
#         [ 6.8944e-43, -2.8812e-24,  6.8944e-43, -5.9272e-21,  6.8944e-43],
#         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]],
#
#        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00],
#         [ 0.0000e+00,  0.0000e+00,  1.4013e-45,  0.0000e+00,  0.0000e+00],
#         [ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00]]])
  • torch.FloatTensor():返回没有初始化的FloatTensor。
#torch.FloatTensor(d1,d2,d3)
torch.FloatTensor(2,2)

#tensor([[-0.0000e+00,  4.5907e-41],
#        [-7.3327e-21,  6.8944e-43]])
  • torch.IntTensor():返回没有初始化的IntTensor。
#torch.IntTensor(d1,d2,d3)
torch.IntTensor(2,2)

#tensor([[          0,  1002524760],
#        [-1687359808,         492]], dtype=torch.int32)

1.2 随机初始化

  • 随机均匀分布:rand/rand_like,randint

    rand:[0,1)均匀分布;randint(min,max,[d1,d2,d3]) 返回[min,max)的整数均匀分布

#torch.rand(d1,d2,d3)
torch.rand(2,2)

#tensor([[0.8670, 0.6158],
#        [0.0895, 0.2391]])

#rand_like()
a=torch.rand(3,2)
torch.rand_like(a)

#tensor([[0.2846, 0.3605],
#        [0.3359, 0.2789],
#        [0.5637, 0.6276]])

#randint(min,max,[d1,d2,d3])
torch.randint(1,10,[3,3,3])

#tensor([[[3, 3, 8],
#         [2, 7, 7],
#         [6, 5, 9]],
#
#        [[7, 9, 9],
#         [6, 3, 9],
#         [1, 5, 6]],
#
#        [[5, 4, 8],
#         [7, 1, 2],
#         [3, 4, 4]]])
  • 随机正态分布 randn

    randn返回一组符合N(0,1)正态分布的随机数据

#randn(d1,d2,d3)
torch.randn(2,2)

#tensor([[ 0.3729,  0.0548],
#        [-1.9443,  1.2485]])

#normal(mean,std) 需要给出均值和方差
torch.normal(mean=torch.full([10],0.),std=torch.arange(1,0,-0.1))

#tensor([-0.8547,  0.1985,  0.1879,  0.7315, -0.3785, -0.3445,  0.7092,  0.0525, 0.2669,  0.0744])
#后面需要用reshape修正成自己想要的形状

1.3 赋值初始化

  • full:返回一个定值
#full([d1,d2,d3],num)
torch.full([2,2],6)

#tensor([[6, 6],
#        [6, 6]])

torch.full([],6)
#tensor(6)   标量

torch.full([1],6)
#tensor([6]) 向量
  • arange:返回一组阶梯,等差数列
#torch.arange(min,max,step):返回一个[min,max),步长为step的集体数组,默认为1
torch.arange(0,10)

#tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

torch.arange(0,10,2)
#tensor([0, 2, 4, 6, 8])
  • linspace/logspace:返回一组阶梯
#torch.linspace(min,max,steps):返回一个[min,max],数量为steps的数组
torch.linspace(1,10,11)

#tensor([ 1.0000,  1.9000,  2.8000,  3.7000,  4.6000,  5.5000,  6.4000,  7.3000,
#         8.2000,  9.1000, 10.0000])

#torch.logspace(a,b,steps):返回一个[10^a,10^b],数量为steps的数组
torch.logspace(0,1,10)

#tensor([ 1.0000,  1.2915,  1.6681,  2.1544,  2.7826,  3.5938,  4.6416,  5.9948,
#         7.7426, 10.0000])
  • ones/zeros/eye:返回全1全0或者对角阵 ones_like/zeros_like
#torch.ones(d1,d2)
torch.ones(2,2)

#tensor([[1., 1.],
#        [1., 1.]])

#torch.zeros(d1,d2)
torch.zeros(2,2)

#tensor([[0., 0.],
#        [0., 0.]])

#torch.eye() 只能接收一个或两个参数
torch.eye(3)

#tensor([[1., 0., 0.],
#        [0., 1., 0.],
#        [0., 0., 1.]])

torch.eye(2,3)

#tensor([[1., 0., 0.],
#        [0., 1., 0.]])

1.4 随机打散变量

  • randperm:一般用于位置操作。类似random.shuffle()。
torch.randperm(8)
#tensor([2, 6, 7, 5, 3, 4, 1, 0])

二、索引与切片

  • 简单索引方式
a=torch.rand(4,3,28,28)
a[0].shape
#torch.Size([3, 28, 28])
a[0,0,0,0]
#tensor(0.9373)
  • 批量索引方式 开始位置:结束位置 左边取的到,右边取不到 算是一种切片 [0,1,2]->[-3,-2,-1]
a[:2].shape
#torch.Size([2, 3, 28, 28])
a[1:].shape
#torch.Size([3, 3, 28, 28])
  • 隔行采样方式 开始位置:结束位置:间隔
a[:,:,0:28:2,:].shape
#torch.Size([4, 3, 14, 28])
  • 任意取样方式 a.index_select(d,[d层的数据索引])
a.index_select(0,torch.tensor([0,2])).shape
#torch.Size([2, 3, 28, 28])

a.index_select(1,torch.tensor([0,2])).shape
#torch.Size([4, 2, 28, 28])
  • ...任意维度取样
a[...].shape
#torch.Size([4, 3, 28, 28])

a[0,...].shape
#torch.Size([3, 28, 28])

a[:,2,...].shape
#torch.Size([4, 28, 28])
  • 掩码索引mask x.ge(0.5) 表示大于等于0.5的为1,小于0.5的为0
#torch.masked_select 取出掩码对应位置的值
x=torch.randn(3,4)
mask=x.ge(0.5)
torch.masked_select(x,mask)

#tensor([1.6950, 1.2207, 0.6035])
  • 具体索引 take(变量,位置) 会把变量变为一维的
x=torch.randn(3,4)
torch.take(x,torch.tensor([0,1,5]))

#tensor([-2.2092, -0.2652,  0.4848])

《动手学深度学习》PyTorch: 数据操作

在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。

在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使Tensor更加适合深度学习。

"tensor"这个单词一般可译作“张量”,张量可以看作是一个多维数组。标量可以看作是0维张量,向量可以看作1维张量,矩阵可以看作是二维张量。

创建Tensor

我们先介绍Tensor的最基本功能,即Tensor的创建。

首先导入PyTorch:

import torch

然后我们创建一个5x3的未初始化的Tensor

x = torch.empty(5, 3)
print(x)

输出:

tensor([[ 0.0000e+00,  1.5846e+29,  0.0000e+00],
        [ 1.5846e+29,  5.6052e-45,  0.0000e+00],
        [ 0.0000e+00,  0.0000e+00,  0.0000e+00],
        [ 0.0000e+00,  0.0000e+00,  0.0000e+00],
        [ 0.0000e+00,  1.5846e+29, -2.4336e+02]])

创建一个5x3的随机初始化的Tensor:

x = torch.rand(5, 3)
print(x)

输出:

tensor([[0.4963, 0.7682, 0.0885],
        [0.1320, 0.3074, 0.6341],
        [0.4901, 0.8964, 0.4556],
        [0.6323, 0.3489, 0.4017],
        [0.0223, 0.1689, 0.2939]])

创建一个5x3的long型全0的Tensor:

x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出:

tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

还可以直接根据数据创建:

x = torch.tensor([5.5, 3])
print(x)

输出:

tensor([5.5000, 3.0000])

还可以通过现有的Tensor来创建,此方法会默认重用输入Tensor的一些属性,例如数据类型,除非自定义数据类型。

x = x.new_ones(5, 3, dtype=torch.float64)  # 返回的tensor默认具有相同的torch.dtype和torch.deviceprint(x)x = torch.randn_like(x, dtype=torch.float) # 指定新的数据类型print(x) 

输出:

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[ 0.6035,  0.8110, -0.0451],
        [ 0.8797,  1.0482, -0.0445],
        [-0.7229,  2.8663, -0.5655],
        [ 0.1604, -0.0254,  1.0739],
        [ 2.2628, -0.9175, -0.2251]])

我们可以通过shape或者size()来获取Tensor的形状:

print(x.size())
print(x.shape)

输出:

torch.Size([5, 3])
torch.Size([5, 3])

注意:返回的torch.Size其实就是一个tuple, 支持所有tuple的操作。

还有很多函数可以创建Tensor,去翻翻官方API就知道了,下表给了一些常用的作参考。

函数功能
Tensor(*sizes)基础构造函数
tensor(data,)类似np.array的构造函数
ones(*sizes)全1Tensor
zeros(*sizes)全0Tensor
eye(*sizes)对角线为1,其他为0
arange(s,e,step)从s到e,步长为step
linspace(s,e,steps)从s到e,均匀切分成steps份
rand/randn(*sizes)均匀/标准分布
normal(mean,std)/uniform(from,to)正态分布/均匀分布
randperm(m)随机排列

这些创建方法都可以在创建的时候指定数据类型dtype和存放device(cpu/gpu)。

Tensor 操作

本小节介绍Tensor的各种操作。

算术操作

在PyTorch中,同一种操作可能有很多种形式,下面用加法作为例子。

  • 加法形式一

    y = torch.rand(5, 3)
    print(x + y)
    
  • 加法形式二

    print(torch.add(x, y))
    

    还可指定输出:

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)
  • 加法形式三、inplace
# adds x to y
y.add_(x)
print(y)

注:PyTorch操作inplace版本都有后缀_, 例如x.copy_(y), x.t_()

以上几种形式的输出均为:

tensor([[ 1.3967,  1.0892,  0.4369],        [ 1.6995,  2.0453,  0.6539],        [-0.1553,  3.7016, -0.3599],        [ 0.7536,  0.0870,  1.2274],        [ 2.5046, -0.1913,  0.4760]])

索引

我们还可以使用类似NumPy的索引操作来访问Tensor的一部分,需要注意的是:索引出来的结果与原数据共享内存,也即修改一个,另一个会跟着修改。

y = x[0, :]
y += 1
print(y)
print(x[0, :]) # 源tensor也被改了

输出:

tensor([1.6035, 1.8110, 0.9549])
tensor([1.6035, 1.8110, 0.9549])

除了常用的索引选择数据之外,PyTorch还提供了一些高级的选择函数:

函数功能
index_select(input, dim, index)在指定维度dim上选取,比如选取某些行、某些列
masked_select(input, mask)例子如上,a[a>0],使用ByteTensor进行选取
nonzero(input)非0元素的下标
gather(input, dim, index)根据index,在dim维度上选取数据,输出的size与index一样

这里不详细介绍,用到了再查官方文档。

改变形状

view()来改变Tensor的形状:

y = x.view(15)
z = x.view(-1, 5)  # -1所指的维度可以根据其他维度的值推出来
print(x.size(), y.size(), z.size())

输出:

torch.Size([5, 3]) torch.Size([15]) torch.Size([3, 5])

注意view()返回的新Tensor与源Tensor虽然可能有不同的size,但是是共享data的,也即更改其中的一个,另外一个也会跟着改变。(顾名思义,view仅仅是改变了对这个张量的观察角度,内部数据并未改变)

x += 1
print(x)
print(y) # 也加了1

输出:

tensor([[1.6035, 1.8110, 0.9549],
        [1.8797, 2.0482, 0.9555],
        [0.2771, 3.8663, 0.4345],
        [1.1604, 0.9746, 2.0739],
        [3.2628, 0.0825, 0.7749]])
tensor([1.6035, 1.8110, 0.9549, 1.8797, 2.0482, 0.9555, 0.2771, 3.8663, 0.4345,
        1.1604, 0.9746, 2.0739, 3.2628, 0.0825, 0.7749])

所以如果我们想返回一个真正新的副本(即不共享data内存)该怎么办呢?Pytorch还提供了一个reshape()可以改变形状,但是此函数并不能保证返回的是其拷贝,所以不推荐使用。推荐先用clone创造一个副本然后再使用view参考此处

x_cp = x.clone().view(15)
x -= 1
print(x)
print(x_cp)

输出:

tensor([[ 0.6035,  0.8110, -0.0451],
        [ 0.8797,  1.0482, -0.0445],
        [-0.7229,  2.8663, -0.5655],
        [ 0.1604, -0.0254,  1.0739],
        [ 2.2628, -0.9175, -0.2251]])
tensor([1.6035, 1.8110, 0.9549, 1.8797, 2.0482, 0.9555, 0.2771, 3.8663, 0.4345,
        1.1604, 0.9746, 2.0739, 3.2628, 0.0825, 0.7749])

使用clone还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源Tensor

另外一个常用的函数就是item(), 它可以将一个标量Tensor转换成一个Python number:

x = torch.randn(1)print(x)print(x.item())

输出:

tensor([2.3466])2.3466382026672363

线性代数

另外,PyTorch还支持一些线性函数,这里提一下,免得用起来的时候自己造轮子,具体用法参考官方文档。如下表所示:

函数功能
trace对角线元素之和(矩阵的迹)
diag对角线元素
triu/tril矩阵的上三角/下三角,可指定偏移量
mm/bmm矩阵乘法,batch的矩阵乘法
addmm/addbmm/addmv/addr/baddbmm…矩阵运算
t转置
dot/cross内积/外积
inverse求逆矩阵
svd奇异值分解

PyTorch中的Tensor支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,可参考官方文档

2.2.3 广播机制

前面我们看到如何对两个形状相同的Tensor做按元素运算。当对两个形状不同的Tensor按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个Tensor形状相同后再按元素运算。例如:

x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)

输出:

tensor([[1, 2]])
tensor([[1],
        [2],
        [3]])
tensor([[2, 3],
        [3, 4],
        [4, 5]])

由于xy分别是1行2列和3行1列的矩阵,如果要计算x + y,那么x中第一行的2个元素被广播(复制)到了第二行和第三行,而y中第一列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

2.2.4 运算的内存开销

前面说了,索引操作是不会开辟新内存的,而像y = x + y这样的运算是会新开内存的,然后将y指向新内存。为了演示这一点,我们可以使用Python自带的id函数:如果两个实例的ID一致,那么它们所对应的内存地址相同;反之则不同。

x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
id_before = id(y)
y = y + x
print(id(y) == id_before) # False 

如果想指定结果到原来的y的内存,我们可以使用前面介绍的索引来进行替换操作。在下面的例子中,我们把x + y的结果通过[:]写进y对应的内存中。

x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
id_before = id(y)
y[:] = y + x
print(id(y) == id_before) # True

我们还可以使用运算符全名函数中的out参数或者自加运算符+=(也即add_())达到上述效果,例如torch.add(x, y, out=y)y += x(y.add_(x))。

x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
id_before = id(y)
torch.add(x, y, out=y) # y += x, y.add_(x)
print(id(y) == id_before) # True

注:虽然view返回的Tensor与源Tensor是共享data的,但是依然是一个新的Tensor(因为Tensor除了包含data外还有一些其他属性),二者id(内存地址)并不一致。

2.2.5 Tensor和NumPy相互转换

我们很容易用numpy()from_numpy()Tensor和NumPy中的数组相互转换。但是需要注意的一点是:
这两个函数所产生的的Tensor和NumPy中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!!!

还有一个常用的将NumPy中的array转换成Tensor的方法就是torch.tensor(), 需要注意的是,此方法总是会进行数据拷贝(就会消耗更多的时间和空间),所以返回的Tensor和原来的数据不再共享内存。

Tensor转NumPy

使用numpy()Tensor转换成NumPy数组:

a = torch.ones(5)
b = a.numpy()
print(a, b)

a += 1
print(a, b)
b += 1
print(a, b)

输出:

tensor([1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1.]
tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.]
tensor([3., 3., 3., 3., 3.]) [3. 3. 3. 3. 3.]

NumPy数组转Tensor

使用from_numpy()将NumPy数组转换成Tensor:

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
print(a, b)

a += 1
print(a, b)
b += 1
print(a, b)

输出:

[1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
[2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
[3. 3. 3. 3. 3.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)

所有在CPU上的Tensor(除了CharTensor)都支持与NumPy数组相互转换。

此外上面提到还有一个常用的方法就是直接用torch.tensor()将NumPy数组转换成Tensor,需要注意的是该方法总是会进行数据拷贝,返回的Tensor和原来的数据不再共享内存。

c = torch.tensor(a)
a += 1
print(a, c)

输出

[4. 4. 4. 4. 4.] tensor([3., 3., 3., 3., 3.], dtype=torch.float64)

2.2.6 Tensor on GPU

用方法to()可以将Tensor在CPU和GPU(需要硬件支持)之间相互移动。

# 以下代码只有在PyTorch GPU版本上才会执行
if torch.cuda.is_available():
    device = torch.device("cuda")          # GPU
    y = torch.ones_like(x, device=device)  # 直接创建一个在GPU上的Tensor
    x = x.to(device)                       # 等价于 .to("cuda")
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))       # to()还可以同时更改数据类型

注: 本文主要参考PyTorch官方文档此处,与原书同一节有很大不同。

本人出于学习的目的,引用本书内容,非商业用途,推荐大家阅读此书,一起学习!!!

加油!

感谢!

努力!

以上是关于深度学习--PyTorch定义Tensor以及索引和切片的主要内容,如果未能解决你的问题,请参考以下文章

《动手学深度学习》PyTorch: 数据操作

PyTorch学习3《PyTorch深度学习实践》——反向传播(Back Propagation)

深度学习计算模型/Tensor的读取和存储(PyTorch)

「深度学习一遍过」必修10:pytorch 框架的使用

深度学习框架pytorch入门与实践:torch的基本使用

Pytorch 入门与实战----pytorch入门