Google Optimization Tools实现加工车间任务规划Python版
Posted Relax Development
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Google Optimization Tools实现加工车间任务规划Python版相关的知识,希望对你有一定的参考价值。
上一篇介绍了《使用.NET Core与Google Optimization Tools实现加工车间任务规划》,这次将Google官方文档python实现的版本的完整源码献出来,以满足喜爱python的朋友。
from __future__ import print_function # Import Python wrapper for or-tools constraint solver. from ortools.constraint_solver import pywrapcp def main(): # Create the solver. solver = pywrapcp.Solver(\'jobshop\') machines_count = 3 jobs_count = 3 all_machines = range(0, machines_count) all_jobs = range(0, jobs_count) # Define data. machines = [[0, 1, 2], [0, 2, 1], [1, 2]] processing_times = [[3, 2, 2], [2, 1, 4], [4, 3]] # Computes horizon. horizon = 0 for i in all_jobs: horizon += sum(processing_times[i]) # Creates jobs. all_tasks = {} for i in all_jobs: for j in range(0, len(machines[i])): all_tasks[(i, j)] = solver.FixedDurationIntervalVar(0, horizon, processing_times[i][j], False, \'Job_%i_%i\' % (i, j)) # Creates sequence variables and add disjunctive constraints. all_sequences = [] all_machines_jobs = [] for i in all_machines: machines_jobs = [] for j in all_jobs: for k in range(0, len(machines[j])): if machines[j][k] == i: machines_jobs.append(all_tasks[(j, k)]) disj = solver.DisjunctiveConstraint(machines_jobs, \'machine %i\' % i) all_sequences.append(disj.SequenceVar()) solver.Add(disj) # Add conjunctive contraints. for i in all_jobs: for j in range(0, len(machines[i]) - 1): solver.Add(all_tasks[(i, j + 1)].StartsAfterEnd(all_tasks[(i, j)])) # Set the objective. obj_var = solver.Max([all_tasks[(i, len(machines[i])-1)].EndExpr() for i in all_jobs]) objective_monitor = solver.Minimize(obj_var, 1) # Create search phases. sequence_phase = solver.Phase([all_sequences[i] for i in all_machines], solver.SEQUENCE_DEFAULT) vars_phase = solver.Phase([obj_var], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE) main_phase = solver.Compose([sequence_phase, vars_phase]) # Create the solution collector. collector = solver.LastSolutionCollector() # Add the interesting variables to the SolutionCollector. collector.Add(all_sequences) collector.AddObjective(obj_var) for i in all_machines: sequence = all_sequences[i]; sequence_count = sequence.Size(); for j in range(0, sequence_count): t = sequence.Interval(j) collector.Add(t.StartExpr().Var()) collector.Add(t.EndExpr().Var()) # Solve the problem. disp_col_width = 10 if solver.Solve(main_phase, [objective_monitor, collector]): print("\\nOptimal Schedule Length:", collector.ObjectiveValue(0), "\\n") sol_line = "" sol_line_tasks = "" print("Optimal Schedule", "\\n") for i in all_machines: seq = all_sequences[i] sol_line += "Machine " + str(i) + ": " sol_line_tasks += "Machine " + str(i) + ": " sequence = collector.ForwardSequence(0, seq) seq_size = len(sequence) for j in range(0, seq_size): t = seq.Interval(sequence[j]); # Add spaces to output to align columns. sol_line_tasks += t.Name() + " " * (disp_col_width - len(t.Name())) for j in range(0, seq_size): t = seq.Interval(sequence[j]); sol_tmp = "[" + str(collector.Value(0, t.StartExpr().Var())) + "," sol_tmp += str(collector.Value(0, t.EndExpr().Var())) + "] " # Add spaces to output to align columns. sol_line += sol_tmp + " " * (disp_col_width - len(sol_tmp)) sol_line += "\\n" sol_line_tasks += "\\n" print(sol_line_tasks) print("Time Intervals for Tasks\\n") print(sol_line) if __name__ == \'__main__\': main()
以上是关于Google Optimization Tools实现加工车间任务规划Python版的主要内容,如果未能解决你的问题,请参考以下文章
如何在 Google OR-Tools Route Optimization 中限制每辆车的位置数量
Google深度学习笔记 Stochastic Optimization