Python之旅.第九章.并发编程.

Posted yangli0504

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python之旅.第九章.并发编程.相关的知识,希望对你有一定的参考价值。

socketserver = 多进程 + 多线程 +  IO模型

一、上节课复习及作业讲解

aspawn用法复习

from gevent import monkey,spawn;monkey.patch_all()

import time

 

def f1():

    print(‘from f1 1‘)

    time.sleep(3)  # 直接调用gevent模块实现遇到IO切换+保持状态

    print(‘from f1 2‘)

 

def f2():

    print(‘from f2 1‘)

    time.sleep(2)

    print(‘from f2 2‘)

 

def f3():

    print(‘from f3 1‘)

    time.sleep(5)

    print(‘from f3 2‘)

 

g1=spawn(f1)

g2=spawn(f2)

g3=spawn(f3)

# time.sleep(10) # spawn 默认为异步调用,如果不加time.sleep g.join()spawn提交后不在原地等待执行, 程序直接结束

g1.join()

g2.join()

g3.join()

 

b、作业讲解  

服务端:

from gevent import monkey,spawn;monkey.patch_all()

from threading import Thread

from socket import *

 

def talk(conn):

    while True:

        try:

            data=conn.recv(1024)

            if not data:break

            conn.send(data.upper())

        except ConnectionResetError:

            break

    conn.close()

 

def server(ip,port,backlog=5):

    s = socket()

    s.bind((ip,port))

    s.listen(backlog)

 

    while True:

        conn, addr = s.accept()

        print(addr)

        # 通信

        g=spawn(talk,conn)

 

    s.close()

 

if __name__ == ‘__main__‘:

    spawn(server,‘127.0.0.1‘,8080).join() # spawn 默认为异步调用,如果不加time.sleep g.join()spawn提交后不在原地等待执行, 程序直接结束

    # server(‘127.0.0.1‘,8080)  # 效果等用于spawn(server,‘127.0.0.1‘,8080).join()

 

客户端:

from threading import Thread,current_thread

from socket import *

 

import os

 

def client():

    client = socket()

    client.connect((‘127.0.0.1‘, 8080))

 

    while True:

        data = ‘%s hello‘ % current_thread().name

        client.send(data.encode(‘utf-8‘))

        res = client.recv(1024)

        print(res.decode(‘utf-8‘))

 

if __name__ == ‘__main__‘:

    for i in range(1000):  #开启1000个线程,以提高效率

        t=Thread(target=client)

        t.start()

 

二、网络IO操作之wait datacopy data

网路IO的两个阶段(copy data阶段 + wait data阶段),换言之,所有IO都围绕这两个阶段

 

服务端:

from socket import *

 

s = socket()  # 等同于s=socket(AF_INET, SOCK_STREAM) 默认AF_INET SOCK_STREAM

s.bind((‘127.0.0.1‘,8080))

s.listen(5)

 

while True:

    conn, addr = s.accept()  # wait data (wait的时间取决于客户端和网络两方面因素)+ copy data(app <=> kernel)accept可感觉到明显的阻塞

    print(addr)

    while True:

        try:

            data = conn.recv(1024)  # wait data + copy data(app <=> kernel) recv可感觉到明显的阻塞

            if not data: break      # for linux, do not pop ConnectionResetError

            print(‘from client msg: ‘,data)

        except ConnectionResetError:  # for windows 

            break

    conn.close()

 

客户端:

from socket import *

 

client = socket()  # s=socket(AF_INET, SOCK_STREAM) 默认AF_INET SOCK_STREAM

client.connect((‘127.0.0.1‘, 8080))

 

while True:

 

    data = input(‘>>: ‘).strip()

    if not data:continue   # if just enter, ask to re-input

client.send(data.encode(‘utf-8‘)) # copy data(app <=> kernel) only

#send(只有copy data阶段)是IO操作,但有时可能感觉不到明显的阻塞,一是因为传输的数据量少,二是因为是本地copy操作不经历网络过程;但如果send的数据量特别大,是有可能感受到阻塞的。

print(‘has send‘)

 

IO模型的目的:自己实现gevent模块,解决单线程下的IO问题(网络IO,不含time.sleep),从而得到高性能。(之前讲的多进程和多线程并没有解决IO

 

三、阻塞IO模型

 

wait datacopy data阶段一个都不能少,完完整整的等下来即为阻塞IO模型

之前所接触的多进程、多线程、进程池、线程池(除了gevent模块以外)都是阻塞IO模型。

 

四、非阻塞IO模型(更好的利用wait data阶段)

 

非阻塞IO只能监测网络IO,不监测time.sleep()这种IO

非阻塞IO有可能大规模占用CPU做无用操作,所以不推荐使用非阻塞IO

 

a 非阻塞IO模型(基础bug版)

服务端:

from socket import *

import time

 

s = socket()

s.bind((‘127.0.0.1‘,8080))

s.listen(5)

s.setblocking(False)  # 不设置默认是True;将其设置成False,即将所有阻塞编程非阻塞(遇到等不到数据的情况,不阻塞,会抛出信息:BlockingIOError

#gevent模块中 monkey.patch_all() s.setblocking(False)

r_list=[]

while True:

    try:

        conn, addr = s.accept()

        r_list.append(conn)

 

    except BlockingIOError:

        # time.sleep(3)  # 非阻塞IO即完全没有阻塞,不应该人为加入time.sleep()

        print(‘可以去干其他的活了‘)

        print(‘rlist: ‘,len(r_list))

        for conn in r_list:

            try:

                data=conn.recv(1024)

                conn.send(data.upper())

            except BlockingIOError:  #如果等不到数据,报出的错误为BlockingIOError

                continue

 

客户端:

from socket import *

import os

 

client = socket()

client.connect((‘127.0.0.1‘, 8080))

 

while True:

    data=‘%s say hello‘ %os.getpid()

    client.send(data.encode(‘utf-8‘))

    res=client.recv(1024)

    print(res.decode(‘utf-8‘))

 

b 非阻塞IO模型(修正)

服务端: 

from socket import *

import time

 

s = socket()

s.bind((‘127.0.0.1‘,8080))

s.listen(5)

s.setblocking(False)

 

r_list=[]

w_list=[]

while True:

    try:

        conn, addr = s.accept()

        r_list.append(conn)

 

    except BlockingIOError:

        # time.sleep(0.05)  #非阻塞模型不应该加time.sleep(); 加上time.sleep(0.05) 即把非阻塞IO模型变成IO多路复用模型

        print(‘可以去干其他的活了‘)

        print(‘rlist: ‘,len(r_list))

 

        # 收消息

        del_rlist=[]

        for conn in r_list:

            try:

                data=conn.recv(1024)

                if not data:   # for linux,不抛出ConnectionResetError,监测是否收到数据

                    conn.close()

                    del_rlist.append(conn)

                    continue

                # conn.send(data.upper())  # 错误做法: send亦有可能阻塞,所以不推荐放在这个位置,宜分到下面发消息模块独立完成

                w_list.append((conn,data.upper())) # 正确做法: 收集待send数据信息; 以小元组的形式写入列表

            except BlockingIOError:

                continue

            except ConnectionResetError:

                conn.close()

                # r_list.remove(conn)   # 错误做法: 在循环期间不推荐改变所循环对象(listdict等)的结构

                del_rlist.append(conn)  # 正确做法: 在循环期间不推荐改变所循环对象(listdict等)的结构

 

        # 发消息

        del_wlist=[]

        for item in w_list:

            try:

                conn=item[0] # 将小元组中数据依次取出

                res=item[1]  # 将小元组中数据依次取出

                conn.send(res)

                del_wlist.append(item)

            except BlockingIOError:

                continue

            except ConnectionResetError:

                conn.close()

                del_wlist.append(item)

 

        # 回收无用连接

        for conn in del_rlist:

            r_list.remove(conn) # 正确做法: 在循环期间不推荐改变所循环对象(listdict等)的结构

 

        for item in del_wlist:

            w_list.remove(item)

 

客户端: 

from socket import *

import os

 

client = socket()

client.connect((‘127.0.0.1‘, 8080))

 

while True:

    data=‘%s say hello‘ %os.getpid()

    client.send(data.encode(‘utf-8‘))

    res=client.recv(1024)

    print(res.decode(‘utf-8‘))

 

五、IO多路复用

 

IO多路复用可同时监测多个套接字,循环询问操作系统是否已准备好数据。在之前修正版的非阻塞IO模型中加入time.sleep() 即将非阻塞IO模型转化成IO多路复用模型

当只监测一个套接字时,多路复用比阻塞IO的效率还要低。

一般会使用select模块帮忙完成IO多路复用模型。(注意: select不能监测到ConnectionResetError,只能监测到BlockingIOError

 

服务端: 

from socket import *

import select

 

s = socket()

s.bind((‘127.0.0.1‘,8080))

s.listen(5)

s.setblocking(False)

# print(s)

 

r_list=[s,]

w_list=[]

w_data={}

while True:

    print(‘被检测r_list ‘,len(r_list))

    print(‘被检测w_list ‘,len(w_list))

    rl,wl,xl=select.select(r_list,w_list,[],) #r_list=[server,conn] rl等存放等到数据的对象

 

    # print(‘rl: ‘,len(rl)) #rl=[conn,]

    # print(‘wl: ‘,len(wl))

 

    # 收消息

    for r in rl: #r=conn

        if r == s:   #r l为已经有等到信息的对象,可能为s,亦可为conn;当为s时,执行accept,当为conn时,执行recv

            conn,addr=r.accept()

            r_list.append(conn) # 建立好连接后,将连接丢入r_list中监测

        else:

            try:

                data=r.recv(1024)

                if not data:  # select模块不帮忙捕捉ConnectionResetError,此操作针对linux系统

                    r.close()

                    r_list.remove(r)

                    continue

                # r.send(data.upper())

                w_list.append(r)

                w_data[r]=data.upper()

            except ConnectionResetError: #select模块不帮忙捕捉ConnectionResetError,此操作针对windows系统

                r.close()

                r_list.remove(r)

                continue

 

    # 发消息

    for w in wl:

        w.send(w_data[w])

        w_list.remove(w)

        w_data.pop(w)

 

客户端: 

from socket import *

import os

 

client = socket()

client.connect((‘127.0.0.1‘, 8080))

 

while True:

    data=‘%s say hello‘ %os.getpid()

    client.send(data.encode(‘utf-8‘))

    res=client.recv(1024)

    print(res.decode(‘utf-8‘))

 

六、异步IO模型

 

异步IO模型的效率最高

之前设计到的异步调用+回调即用到了异步IO模型。具体的实现操作会在爬虫中详细介绍 

from concurrent.futures import ThreadPoolExecutor

from threading import current_thread

import time

import os

 

def task(n):

    print(‘%s is running‘ %current_thread().name)

    time.sleep(2)

    return n**2

 

def parse(obj):

    res=obj.result()

    print(res)

 

if __name__ == ‘__main__‘:

    t=ThreadPoolExecutor(4)

 

    future1=t.submit(task,1)

    future1.add_done_callback(parse) #parse函数会在future1对应的任务执行完毕后自动执行,会把future1自动传给parse

 

    future2=t.submit(task,2)

    future2.add_done_callback(parse)

 

    future3=t.submit(task,3)

    future3.add_done_callback(parse)

 

    future4=t.submit(task,4)

future4.add_done_callback(parse) 

 

七、重点知识归纳(网络编程+ 并发编程)

网络编程

                       目标:编写一个C/SB/S架构的基于网络通信的软件

                                                                     

                       1C/S,B/S*****

                                              server<===============>client

                                              服务端特点:

                                                                     1、不间断地提供服务

                                                                     2、服务端要支持并发+高性能

 

                       2、互联网

                                              互联网=物理连接介质+互联网协议(OSI七层***

                                              

                                              tcp三次握手,四次挥手 *****

                                              tcp可靠,但不如udp效率高 *****

                                              udp不可靠,但效率高 *****

                       

                       3socket*****

                                              socket抽象层位于传输层与应用层之间

                       

                       4、基于tcp协议的套接字通信(*****

                                              加上连接循环

                                              加上通信循环

                       

                       5、粘包问题:(*****

                                              tcp流式协议独有的粘包问题

                                                                     解决方法:自定义报头

                       

                                              udp数据报协议没有粘包问题

                                                                     

                       6、远程执行命令的小程序/上传下载文件的程序(*****

                       

                       7、基于udp协议的套接字通信(***

                       

                       

并发编程

                       目标:让服务端能够支持高并发+高性能

 

                       1               操作系统发展史

                                              多道技术(*****

                                                                     产生背景

                                                                     多道技术的核心:

                                                                                            1、空间上的复用

                                                                                            2、时间上的复用

                                                                                            

                                              *****

                                              并发:看起来同时运行

                                              并行:真正意义上的同时运行,一个cpu同一时刻只能做一件事

                                                                     只有多核才能同时做多件事,即并行的效果

                                                                     

                                              

                       2、进程

                                              1、进程理论(*****

                                              2、开启进程的两种方式(*****

                                              3、守护进程(**

                                              4、互斥锁与信号量(**

                                              5IPC机制:队列,管道(*

                                              6、进程queue=管道+ ***

                                              7、生产者消费者模型(*****

                                              

                       3、线程

                                              1、线程理论(*****

                                              2、开启线程的两种方式(*****

                                              3、守护线程(**

                                              4、互斥锁与信号量(**

                                              5GIL vs 互斥锁(*****

                                              6Cpython的解释器下(*****

                                                                     多个任务是IO密集型:多线程

                                                                     多个任务是计算密集型:多进程

                                              7、死锁现象与递归锁(**

                                              8、线程queue***

                                              9Event事件(**

                       

                       4、池(*****

                                              为何要用池:

                                                                     操作系统无法无限开启进程或线程

                                                                     池作用是将进程或线程控制操作系统可承受的范围内

                                              什么时候用池:

                                                                     当并发的任务数要远超过操作系统所能承受的进程数或

                                                                     线程数的情况应该使用池对进程数或线程数加以限制

                                              

                                              如何用池?

                                                                     池内装的东西有两种:

                                                                                            装进程:进程池

                                                                                            装线程:线程池

                                                                                            

                                                                     进程线程池的使用

                       

                                              

                                              提交的两种方式:

                                                                     同步调用

                                                                     异步调用+回调机制

                                                                     

                                              任务执行的三种状态:

                                                                     阻塞

                                                                                            阻塞

                                                                     非阻塞:

                                                                                            就绪

                                                                                            运行

                                                                     

                                              

                       

                       5、单线程下实现并发(****

                                              协程:在应用程序级别实现多个任务之间切换+保存状态

                                              

                                              高性能:

                                                                     单纯地切换,或者说么有遇到io操作也切换,反而会降低效率

                                                                     检测单线程下的IO行为,实现遇到IO立即切换到其他任务执行

                                                                     

                                              gevent

                                                                     

                       6IO模型(主要掌握理论****

                                              阻塞IO

                                              非阻塞IO

                                              IO多路复用

                                              异步IO

以上是关于Python之旅.第九章.并发编程.的主要内容,如果未能解决你的问题,请参考以下文章

Python之旅.第九章.并发编程。

Python之旅.第九章.并发编程.

类加载过程-《java高并发编程详解》第九章 重点记录

类加载过程-《java高并发编程详解》第九章 重点记录

《Java并发编程实战》第九章 图形用户界面应用程序界面 读书笔记

《Java并发编程实战》第九章 图形用户界面应用程序界面 读书笔记