python 读取大文件越来越慢(判断 key 在 map 中,千万别用 in keys())

Posted 君子终日乾乾,夕惕若厉,无咎~

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 读取大文件越来越慢(判断 key 在 map 中,千万别用 in keys())相关的知识,希望对你有一定的参考价值。

背景:

今天同事写代码,用python读取一个四五百兆的文件,然后做一串逻辑上很直观的处理。结果处理了一天还没有出来结果。问题出在哪里呢?

 

解决:

1. 同事打印了在不同时间点的时间,在需要的地方插入如下代码:

print time.strftime(\'%Y-%m-%d %H:%M:%S\',time.localtime(time.time())) 

发现一个规律,执行速度到后面时间越来越长,也就是处理速度越来越慢。

2. 为什么会越来越慢呢?

    1)可能原因1,GC 的问题,有篇文章里面写,python list append 的时候会越来越慢,解决方案是禁止GC:

使用 gc.disable()和gc.enable()

    2)改完上面,仍然不行,然后看到一篇文章里面写,可能是因为 git 导致的,因为append 的时候 git 会不断同步,会出问题,于是删除 .git 文件夹,结果还是不行。

    3)继续查询,发下一个及其有可能出问题的地方。dict 的 in dict.key(),判断 key 是否在 dict 里面,这个的效率是非常低的。看到一篇文章比较了效率:
          ① 使用  in dict.keys() 效率:

 

          ② 使用 has_key()  效率:
 
发现 has_key() 效率比较稳定。于是修改,问题解决。
 
后话:
最初的时候,的确是使用 has_key(), 结果后面上传代码的时候,公司代码检查过不了,提示不能使用这个函数,只能改成 in dict.key() 这种方式,为什么公司不让这么传呢?经过一番百度,发现原因所在:在 python3 中,直接将 has_key() 函数给删除了,所以禁止使用。那禁止了该怎么办呢?原来 python 中 in 很智能,能自动判断 key 是否在字典中存在。所以最正规的做法不是 has_key(),   更不是 in dict.keys(), 而是 in dict.  判断 key 在 map 中,千万别用 in dict.keys() !!!
 

附录:

in、 in dict.keys()、 has_key() 方法实战对比:

>>> a = {\'name\':"tom", \'age\':10, \'Tel\':110}
>>> a
{\'age\': 10, \'Tel\': 110, \'name\': \'tom\'}
>>> print \'age\' in a
True
>>> print \'age\' in a.keys()
True
>>>
>>> print a.has_key("age")
True

 

参考资料:

https://www.douban.com/group/topic/44472300/

http://www.it1352.com/225441.html

https://blog.csdn.net/tao546377318/article/details/52160942

 

以上是关于python 读取大文件越来越慢(判断 key 在 map 中,千万别用 in keys())的主要内容,如果未能解决你的问题,请参考以下文章

python 处理大数据程序运行的越来越慢的问题

python读取大词向量文件

python读取大词向量文件

nodejs下载文件先判断内存是不是够用

python 文件操作

为啥我的 unordered_map 越来越大