Mac | iOS | Windows:安装Stable diffusion教程

Posted 山青咏芝

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mac | iOS | Windows:安装Stable diffusion教程相关的知识,希望对你有一定的参考价值。

热烈欢迎,请直接点击!!!

进入博主App Store主页,下载使用各个作品!!!

注:博主将坚持每月上线一个新app!!!

Apple已支持的开源库:https://machinelearning.apple.com/research/stable-diffusion-coreml-apple-silicon

一、MAC部署
git clone https://github.com/apple/ml-stable-diffusion
// 下载的文件夹运行
pip install -e . 
注册登陆:hugging face
点击生成token并复制:https://huggingface.co/settings/tokens

 接下去命令行输入指令,按提示输入

huggingface-cli login

运行指令,在文件夹下运行,顺便创建一个放置ml模型的文件夹,替换下面的-o

python -m python_coreml_stable_diffusion.torch2coreml --convert-unet --convert-text-encoder --convert-vae-decoder --convert-safety-checker -o ./output_ml
官方还给了一个api:
--model-version runwayml/stable-diffusion-v1-5 #可以指定其他版本的diffusion模型,默认是 CompVis/stable-diffusion-v1-4
--bundle-resources-for-swift-cli  #将ml文件整理成一个swift包,python生成不需要使用
--chunk-unet #ios和ipados部署需要,后面两个之后有机会我想去尝试一下在真机上的部署
--attention-implementation #在Apple芯片上的npu上实现
如果想部署手机和平板可以参考:
python -m python_coreml_stable_diffusion.torch2coreml --convert-unet --convert-text-encoder --convert-vae-decoder --convert-safety-checker -o ./sd2_ml --chunk-unet --model-version stabilityai/stable-diffusion-2-1-base --bundle-resources-for-swift-cli
大约20几分钟,会生成下列文件:
接着还是在ml-stable-diffusion的文件夹下运行,对了再创建一个放图片的文件夹:
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i ./output_ml -o ./output_image --compute-unit ALL --seed 93
swift用下面这个:
swift run StableDiffusionSample "A photo of a little girl walking on the beach with the Jenny Turtle" --resource-path ./sd2_ml/Resources/ --seed 93 --output-path ./output_image

--model-version #如果前面修改了这个也要修改
--num-inference-steps #默认推理50次,用这个可以自定义次数
参考了官方的基准指南--compute-unit 选择了CPU_AND_NE,swift 2秒左右一个step,快了很多。

就是从上图中我们可以看到似乎无后缀的M芯片由于GPU数量较少吧我猜--compute-unit 都推荐选CPU_AND_NE,pro系列芯片选ALL,以上选CPU_AND_GPU。

--attention-implementation 直接看GPU核心数,小于等于16个使用SPLLIT_EINSUM,就是默认的其实啥也不用加。大于16个使用ORIGINAL。
我猜因为M芯片是16核NPU的,GPU核心数比NPU小那肯定用NPU,GPU核心数大大超过NPU,那还是GPU的效率更高吧。
二、iPhone & iPad部署
打开Xcode,导入库和上面生成的ML文件
 import SwiftUI
 import StableDiffusion
 import CoreML
 
 struct ContentView: View 
     @State var prompt: String = "a photo of an astronaut riding a horse on mars"
     @State var step = 10
     @State var seed = 100
     @State var image: CGImage?
     @State var progress = 0.0
     @State var generating = false
     @State var booting = true
     
     @State var pipeline: StableDiffusionPipeline?
     
     private let disableSafety = false
 
     
     var body: some View 
         VStack 
             if booting 
                 Text("Initializing...")
              else 
                 if let image 
                     Image(uiImage: UIImage(cgImage: image))
                         .resizable()
                         .scaledToFit()
                 
                 if generating 
                     ProgressView(value: progress)
                 
                 if !generating 
                     TextField("Prompt", text: $prompt)
                     Stepper(value: $step, in: 1...100) 
                         Text("steps: \\(step)")
                     
                     Stepper(value: $seed, in: 0...10000) 
                         Text("Seed: \\(seed)")
                     
                     Button("Generate") 
                         progress = 0.0
                         image = nil
                         generating = true
                         Task.detached(priority: .high) 
                             var images: [CGImage?]?
                             do 
                                 print("generate")
                                 images = try pipeline?.generateImages(prompt: prompt, stepCount: step,seed: seed, disableSafety: disableSafety, progressHandler:  progress in
                                     print("test")
                                     self.progress = Double(progress.step) / Double(step)
                                     if let image = progress.currentImages.first 
                                         self.image = image
                                     
                                     return true
                                 )
                              catch let error 
                                 print(error.localizedDescription)
                             
                             print("finish")
                             if let image = images?.first 
                                 self.image = image
                             
                             generating = false
                         
                     
                 
             
         
         .padding()
         .onAppear
             Task.detached(priority: .high) 
                 do 
                     print(os_proc_available_memory())
                     guard let path = Bundle.main.path(forResource: "CoreMLModels", ofType: nil, inDirectory: nil) else 
                         fatalError("Fatal error: failed to find the CoreML models.")
                     
                     let resourceURL = URL(fileURLWithPath: path)
                     let config = MLModelConfiguration()
                     config.computeUnits = .cpuAndNeuralEngine
                     pipeline = try StableDiffusionPipeline(resourcesAt: resourceURL, configuration: config,reduceMemory: true)
                     try pipeline?.loadResources()
                     print("initialized pipeline")
                  catch let error 
                     print("error initializing pipeline")
                     print(error.localizedDescription)
                 
                 booting = false
             
         
     
 
 
 struct ContentView_Previews: PreviewProvider 
     static var previews: some View 
         ContentView()
     
 
在iPad和Mac上建议config.computeUnits = .cpuAndNeuralEngine。如果要继续在iPhone上部署的话改为这个config.computeUnits = .cpuAndGPU,然后来到Signing界面,点击Capability,选择Increased Memory Limit。这样就可以在iPhone真机上运行了。这个项目在iPhone真机上需要3GB多一点的内存,我是iPhone 14pro,程序默认可用内存也是3GB多一点刚好杀死。所以通过Increased Memory Limit将可用内存提升至4GB左右才可以运行。另外,即使提升了内存使用神经引擎还是会抱内存错误,只有用GPU才可以,iPad air5没有这种报错两个都可。GPU的运行速度是比神经引擎慢一点的,但是一台手机可以本地运行diffusion还是蛮酷的。 

 三、Windows部署

下载库:去github网址下载 - > https://github.com/CompVis/stable-diffusion

git clone https://github.com/CompVis/stable-diffusion.git

配置环境和文件

简单的操作,在下载后的文件夹下直接输下面两个:

conda env create -f environment.yaml
conda activate ldm
这样就配置好了。或者就像我一样傻傻的报错一个安装一个,环境是pytorch torchvision。
pip install transformers==4.19.2 diffusers invisible-watermark
pip install -e .
pip install OmegaConf einops taming-transformers pytorch-lighnting clip kornia

问题

第一个问题官网是有说明的,但就是这个下载地址藏得很深不好找。

 找了一会才找到https://huggingface.co/CompVis/stable-diffusion-v-1-4-original,把这个sd-v1-4.ckpt文件下载下来,随便哪个都行,大概四个G。

 

 

下载模型文件放置到这个文件夹下,就是上面官方说明的那个位置,命名成model.ckpt。

 

 运行下面的代码,不出意外会报错。

python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --plms

问题好像是原作者修改了这个库,将你的quantize.py(报错的信息里包含文件所在的绝对路径)文件替换成这个网址的文件
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vqvae/quantize.py

 再运行一次又报错

  现在有一个简单的办法了,感谢数学系之耻的建议,直接降精度就可以释放显存了。如下修改txt2img.py文件第244行

 效果图:

或者接下去看比较复杂的方法!
不知道需要多大的内存才可以,网上找到方法是用优化的库。网上还有一种办法说注释掉什么安全检查的我试了没有变化。
https://github.com/basujindal/stable-diffusion
下载完后在新的库上也是需要安装一些环境,在新的文件夹下运行下面的安装代码

pip install -e .

优化的库代码放在optimizedSD文件夹下,也保留了之前的源代码,不要搞错了。

重新安装一下这个优化库的环境,将ckpt放到对应的位置。

python optimizedSD/optimized_txt2img.py --prompt "Cyberpunk style image of a Tesla car reflection in rain" --H 512 --W 512 --seed 27 --n_iter 2 --n_samples 5 --ddim_steps 50

运行后报这个错。查了一下,好像是最近优化的作者也换了一个库https://github.com/basujindal/stable-diffusion/issues/175 用下面的办法就能解决了。

pip install git+https://github.com/crowsonkb/k-diffusion.git

然后打开编辑optimizedSD/ddpm.py文件,将from samplers…改成上面图片的三个from k_diffusion…然后贫穷的显卡的电脑也就可以跑了,不说了要努力搬砖买24g的显卡了。

在Windows下怎么 如何用vm虚拟机安装mac苹果操作系统 如何启动mac 苹果电脑root用户账户

在Windows下用 vm 虚拟机安装 mac 苹果操作系统,苹果电脑启动 root 用户账号

  首先下载两个文件一个是unlocker,下载地址:链接:http://pan.baidu.com/s/1qX8jBkg 密码:6nyr

  一个是OS X 10.11.1(15B42).cdr:下载地址:链接:http://pan.baidu.com/s/1o8Fp4Lk 密码:tjvi

1 创建虚拟机,点击新建虚拟机选择典型

技术分享

 

 2 现在安装程序光盘

技术分享

 

3 在下载的目录中选择所有文件,才能看见cdr文件

技术分享

 

4 选择apple mac

 技术分享

 

5 自定路径后,设置虚拟机磁盘大小,选择将虚拟机磁盘存储为单个文件

技术分享

 

6 自己配置处理器和内存

技术分享

 

7 配置完后,启动虚拟机,将会出现以下错误

技术分享

 

8 将下载的unlocker解压虚拟机安装的同一父目录下即可,比如我的就解压到G盘下就可以,不是解压到mac目录下,右键点击

用管理员权限运行

 

技术分享

 

9 找到虚拟机的目录,用记事本打开下面文件

技术分享

 

10  在第五行后面添加 smc.version=0,保存后退出

 技术分享

再次启动虚拟机就可以正常安装了,在选择磁盘分区时

技术分享

 

11 选择抹掉,其他默认,然后抹掉

技术分享

 

 12 抹掉之后就返回

技术分享

 

 13 选择未命名,继续

技术分享

14 后面就是选择输入法等,自行配置,默认安装完是没有启动root用户的

  

下启动root用户过程

1 点击设置,群组和用户

技术分享

 

 2 点击 点按锁按钮以进行更改,输入刚才安装过程中用户的密码

技术分享

 

3 依次点击 

 技术分享

 4 按顺序点击,即可启用root用户,并未root用户设置密码

技术分享

5 最后,如果觉得安装实在太麻烦,那么可以直接下载下载已经安装好的vm文件,下载后直接用vm虚拟机打开就可以用啦

下载地址:链接:http://pan.baidu.com/s/1gf3YxQN 密码:bfcr

 

以上是关于Mac | iOS | Windows:安装Stable diffusion教程的主要内容,如果未能解决你的问题,请参考以下文章

Windows下虚拟机安装Mac OS X ----- VM12安装Mac OS X 10.11

如何开发windows下的USB HID应用

苹果mac 安装ios系统怎么安装

在 Visual Studio 中使用 C# 或 VB 为 Mac、Windows 或 iOS 创建桌面应用程序 [关闭]

怎么在苹果Mac虚拟机上安装Win7

Maven的安装文字版(Windows/Linux/Mac)(转)