meme suite —— Motif分析百宝箱(二)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了meme suite —— Motif分析百宝箱(二)相关的知识,希望对你有一定的参考价值。
参考技术A
Motif Discovery中还包括MEME-ChIP,可对ChIP-seq或CLIP-seq数据的DNA序列进行一系列的Motif分析。该方法整合了:
1、MEME&STREME功能,用以预测Motif(de novo Motif);
2、CentriMo用以寻找输入序列中间区段内已知的Motif,适合ChIP-Seq数据检出峰所在序列上富集的已知 Motif;
3、通过工具Tomtom功能比较已知的motif进行相似性分析,并对重要的motif进行分组;
4、Spamo与CentriMo功能相似,也是对Motif进行富集;
5、FIMO功能旨在输出Motif在基因的位置信息。
MEME-ChIP具体参数可以使用默认值,或按需求更改。示意图如下:
我们以网站Sample Output中MEME-ChIP example结果为例进行说明。
r 导入荷马ChIP-Seq Motif数据
# Daniel Cook 2014
# Danielecook.com
#
# Use this function to import ChIP Seq Data generated by Homer. This data is generated using homers findMotifsGenome.pl
# command with the '-find <motif file>' argument. Generate output
# looks like this:
#
# 1. Peak/Region ID
# 2. Chromosome
# 3. Start
# 4. End
# 5. Strand of Peaks
# 6-18: annotation information
# 19. CpG%
# 20. GC%
# 21. Motif Instances <distance from center of region>(<sequence>,<strand>,<conservation>)
#
# Getting the information from column 21 for plotting, for example, frequency can be tricky. This funciton aims to help that
# by converting the data format from wide to long. Currently, annotation columns are ignored but you can modify the function to
# fix.
library(stringr)
library(splitstackshape)
library(reshape2)
library(dplyr)
suppressMessages(library(data.table))
import_peak_file <- function(filename, peak_type) {
df <- fread(filename)
setnames(df, names(df)[1],"Peak")
setnames(df, names(df)[9:length(names(df))] , str_extract(names(df)[9:length(names(df))], "[A-Za-z0-9]+"))
motifs <- names(df)[9:length(names(df))]
# Reshape latter columns
# Remove extra columns if present
df$Annotation <- NULL
df$"Focus Ratio/Region Size" <- NULL
df$Detailed <- NULL
df$Distance <- NULL
df$Nearest <- NULL
df$Entrez <- NULL
df$Nearest <- NULL
df$Nearest <- NULL
df$Nearest <- NULL
df$Gene <- NULL
df$Gene <- NULL
df$Gene <- NULL
df$Gene <- NULL
# Melt Again
df <- melt(df, id.vars = 1:8)
df$value <- str_replace_all(df$value, "),", "|")
df <- filter(df, value != "")
df <- concat.split(as.data.frame(df), split.col = c("value"), sep="|")
df$value <- NULL
df <- rename(df, c("variable"="motif_name"))
df <- melt(df, id.vars = 1:9)
df$value_1 <- NULL
df$variable <- NULL
df <- filter(df, value != "")
df$MOTIF <- str_extract(df$value,"[ATCG]+")
df$POS <- as.integer(str_extract(df$value,"[-0-9]+"))
df$STRAND <- str_extract(df$value,"(,[+|-],)")
df$STRAND <- str_replace_all(df$STRAND,",","")
df$value <- NULL
df <- filter(df, !is.na(POS))
df$peak_type <- peak_type
df
}
以上是关于meme suite —— Motif分析百宝箱(二)的主要内容,如果未能解决你的问题,请参考以下文章
MEME(Motif-based sequence analysis tools)使用说明
fimo: 扫描motif时需留心的小坑
ChIP-Seq数据挖掘系列-2: Motif 分析(2) - HOMER Motif 分析基本步骤
motif分析软件-----Homer的安装
ChIP-Seq数据挖掘系列-6: 怎么选择HOMMER结果中的motif
Homer预测共表达基因的motif