Python Matplotlib模块--pylab

Posted soyosuyang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python Matplotlib模块--pylab相关的知识,希望对你有一定的参考价值。

#-*- coding: utf-8 -*-
\'\'\'
subplot(m,n,p):其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果m=2就是表示2行图。p表示图所在的位置,p=1表示从左到右从上到下的第一个位置。
np.random.uniform(0.5,1.0,n):获取 0.5~1.0之间n个随机数
zip(x,y):将x和Y中的数据两两配对最后以列表返回
plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center"):指定文字出现在柱状图上的位置和内容
x+0.4:文字显示横向增加0.4长度
y+0.1:文字显示纵向增加0.1长度     
"%.2f"%y:应该显示的内容
@author: soyo
\'\'\'
import matplotlib.pylab as plt
import numpy as np
plt.subplot(2,1,1)
n=12
x=np.arange(n)
print x  
print x/float(n)
print np.random.uniform(0.5,1.0,n)
y1=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
y2=(1-x/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(x,+y1,facecolor="red",edgecolor="grey")
plt.bar(x,-y2,facecolor="lightblue",edgecolor="orange")
print y1
for x,y in zip(x,y1):
    plt.text(x+0.4, y+0.1, "%.2f"%y, ha="center")     
    print (x,y)
plt.ylim(-1.25,+1.25)
plt.subplot(2,2,3)
x=np.linspace(-np.pi,np.pi,300, endpoint=True)
print x
sin=np.sinc(x)
cos=np.cos(x)
plt.plot(x,cos,color="red",linewidth=2.7,linestyle="-")
plt.plot(x,sin,color="blue",linewidth=4,linestyle="--")
plt.xlim(x.min()*1.1,x.max()*1.1)
plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi],[r\'$-\\pi$\',r\'$-\\pi/2$\',r\'$0$\',r\'$+\\pi/2$\',r\'$+\\pi$\'])
plt.ylim(cos.min()*1.1,cos.max()*1.1)
# plt.yticks([-1,0,1],[r\'$-1$\',r\'$0$\',r\'$+1$\'])
plt.yticks([-1,0,1])

plt.subplot(2,2,4)
m=10
z=np.random.uniform(5,9,6)
plt.pie(z)
plt.show()

结果:

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[ 0.          0.08333333  0.16666667  0.25        0.33333333  0.41666667
  0.5         0.58333333  0.66666667  0.75        0.83333333  0.91666667]
[ 0.95962168  0.83510776  0.59960879  0.9103227   0.86161055  0.85219339
  0.64341482  0.50396784  0.79940237  0.78113541  0.66371799  0.63459297]
[ 0.65987664  0.87527832  0.79239077  0.61438775  0.44085434  0.38703261
  0.40706581  0.2836271   0.25465063  0.20754596  0.124999    0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
 -3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
 -2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
 -2.7633407  -2.7423267  -2.7213127  -2.7002987  -2.6792847  -2.65827071
 -2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
 -2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
 -2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
 -2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
 -2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
 -2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
 -1.88075279 -1.85973879 -1.8387248  -1.8177108  -1.7966968  -1.7756828
 -1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
 -1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
 -1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
 -1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
 -1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
 -1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
 -0.99816489 -0.97715089 -0.95613689 -0.9351229  -0.9141089  -0.8930949
 -0.8720809  -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
 -0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
 -0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
 -0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
 -0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
 -0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
 -0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521   -0.010507
  0.010507    0.031521    0.05253499  0.07354899  0.09456299  0.11557699
  0.13659098  0.15760498  0.17861898  0.19963298  0.22064698  0.24166097
  0.26267497  0.28368897  0.30470297  0.32571696  0.34673096  0.36774496
  0.38875896  0.40977295  0.43078695  0.45180095  0.47281495  0.49382895
  0.51484294  0.53585694  0.55687094  0.57788494  0.59889893  0.61991293
  0.64092693  0.66194093  0.68295492  0.70396892  0.72498292  0.74599692
  0.76701092  0.78802491  0.80903891  0.83005291  0.85106691  0.8720809
  0.8930949   0.9141089   0.9351229   0.95613689  0.97715089  0.99816489
  1.01917889  1.04019289  1.06120688  1.08222088  1.10323488  1.12424888
  1.14526287  1.16627687  1.18729087  1.20830487  1.22931886  1.25033286
  1.27134686  1.29236086  1.31337486  1.33438885  1.35540285  1.37641685
  1.39743085  1.41844484  1.43945884  1.46047284  1.48148684  1.50250083
  1.52351483  1.54452883  1.56554283  1.58655683  1.60757082  1.62858482
  1.64959882  1.67061282  1.69162681  1.71264081  1.73365481  1.75466881
  1.7756828   1.7966968   1.8177108   1.8387248   1.85973879  1.88075279
  1.90176679  1.92278079  1.94379479  1.96480878  1.98582278  2.00683678
  2.02785078  2.04886477  2.06987877  2.09089277  2.11190677  2.13292076
  2.15393476  2.17494876  2.19596276  2.21697676  2.23799075  2.25900475
  2.28001875  2.30103275  2.32204674  2.34306074  2.36407474  2.38508874
  2.40610273  2.42711673  2.44813073  2.46914473  2.49015873  2.51117272
  2.53218672  2.55320072  2.57421472  2.59522871  2.61624271  2.63725671
  2.65827071  2.6792847   2.7002987   2.7213127   2.7423267   2.7633407
  2.78435469  2.80536869  2.82638269  2.84739669  2.86841068  2.88942468
  2.91043868  2.93145268  2.95246667  2.97348067  2.99449467  3.01550867
  3.03652267  3.05753666  3.07855066  3.09956466  3.12057866  3.14159265]

 

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[ 0.          0.08333333  0.16666667  0.25        0.33333333  0.41666667
  0.5         0.58333333  0.66666667  0.75        0.83333333  0.91666667]
[ 0.95962168  0.83510776  0.59960879  0.9103227   0.86161055  0.85219339
  0.64341482  0.50396784  0.79940237  0.78113541  0.66371799  0.63459297]
[ 0.65987664  0.87527832  0.79239077  0.61438775  0.44085434  0.38703261
  0.40706581  0.2836271   0.25465063  0.20754596  0.124999    0.08099565]
(0, 0.65987664052659789)
(1, 0.87527832104794756)
(2, 0.79239077290271298)
(3, 0.61438775127130618)
(4, 0.44085434356099779)
(5, 0.3870326100974873)
(6, 0.40706580998264275)
(7, 0.2836271049672956)
(8, 0.2546506260468242)
(9, 0.20754596219057092)
(10, 0.12499900221786377)
(11, 0.080995646704109761)
[-3.14159265 -3.12057866 -3.09956466 -3.07855066 -3.05753666 -3.03652267
 -3.01550867 -2.99449467 -2.97348067 -2.95246667 -2.93145268 -2.91043868
 -2.88942468 -2.86841068 -2.84739669 -2.82638269 -2.80536869 -2.78435469
 -2.7633407  -2.7423267  -2.7213127  -2.7002987  -2.6792847  -2.65827071
 -2.63725671 -2.61624271 -2.59522871 -2.57421472 -2.55320072 -2.53218672
 -2.51117272 -2.49015873 -2.46914473 -2.44813073 -2.42711673 -2.40610273
 -2.38508874 -2.36407474 -2.34306074 -2.32204674 -2.30103275 -2.28001875
 -2.25900475 -2.23799075 -2.21697676 -2.19596276 -2.17494876 -2.15393476
 -2.13292076 -2.11190677 -2.09089277 -2.06987877 -2.04886477 -2.02785078
 -2.00683678 -1.98582278 -1.96480878 -1.94379479 -1.92278079 -1.90176679
 -1.88075279 -1.85973879 -1.8387248  -1.8177108  -1.7966968  -1.7756828
 -1.75466881 -1.73365481 -1.71264081 -1.69162681 -1.67061282 -1.64959882
 -1.62858482 -1.60757082 -1.58655683 -1.56554283 -1.54452883 -1.52351483
 -1.50250083 -1.48148684 -1.46047284 -1.43945884 -1.41844484 -1.39743085
 -1.37641685 -1.35540285 -1.33438885 -1.31337486 -1.29236086 -1.27134686
 -1.25033286 -1.22931886 -1.20830487 -1.18729087 -1.16627687 -1.14526287
 -1.12424888 -1.10323488 -1.08222088 -1.06120688 -1.04019289 -1.01917889
 -0.99816489 -0.97715089 -0.95613689 -0.9351229  -0.9141089  -0.8930949
 -0.8720809  -0.85106691 -0.83005291 -0.80903891 -0.78802491 -0.76701092
 -0.74599692 -0.72498292 -0.70396892 -0.68295492 -0.66194093 -0.64092693
 -0.61991293 -0.59889893 -0.57788494 -0.55687094 -0.53585694 -0.51484294
 -0.49382895 -0.47281495 -0.45180095 -0.43078695 -0.40977295 -0.38875896
 -0.36774496 -0.34673096 -0.32571696 -0.30470297 -0.28368897 -0.26267497
 -0.24166097 -0.22064698 -0.19963298 -0.17861898 -0.15760498 -0.13659098
 -0.11557699 -0.09456299 -0.07354899 -0.05253499 -0.031521   -0.010507
  0.010507    0.031521    0.05253499  0.07354899  0.09456299  0.11557699
  0.13659098  0.15760498  0.17861898  0.19963298  0.22064698  0.24166097
  0.26267497  0.28368897  0.30470297  0.32571696  0.34673096  0.36774496
  0.38875896  0.40977295  0.43078695  0.45180095  0.47281495  0.49382895
  0.51484294  0.53585694  0.55687094  0.57788494  0.59889893  0.61991293
  0.64092693  0.66194093  0.68295492  0.70396892  0.72498292  0.74599692
  0.76701092  0.78802491  0.80903891  0.83005291  0.85106691  0.8720809
  0.8930949   0.9141089   0.9351229   0.95613689  0.97715089  0.99816489
  1.01917889  1.04019289  1.06120688  1.08222088  1.10323488  1.12424888
  1.14526287  1.16627687  1.18729087  1.20830487  1.22931886  1.25033286
  1.27134686  1.29236086  1.31337486  1.33438885  1.35540285  1.37641685
  1.39743085  1.41844484  1.43945884  1.46047284  1.48148684  1.50250083
  1.52351483  1.54452883  1.56554283  1.58655683  1.60757082  1.62858482
  1.64959882  1.67061282  1.69162681  1.71264081  1.73365481  1.75466881
  1.7756828   1.7966968   1.8177108   1.8387248   1.85973879  1.88075279
  1.90176679  1.92278079  1.94379479  1.96480878  1.98582278  2.00683678
  2.02785078  2.04886477  2.06987877  2.09089277  2.11190677  2.13292076
  2.15393476  2.17494876  2.19596276  2.21697676  2.23799075  2.25900475
  2.28001875  2.30103275  2.32204674  2.34306074  2.36407474  2.38508874
  2.40610273  2.42711673  2.44813073  2.46914473  2.49015873  2.51117272
  2.53218672  2.55320072  2.57421472  2.59522871  2.61624271  2.63725671
  2.65827071  2.6792847   2.7002987   2.7213127   2.7423267   2.7633407
  2.78435469  2.80536869  2.82638269  2.84739669  2.86841068  2.88942468
  2.91043868  2.93145268  2.95246667  2.97348067  2.99449467  3.01550867
  3.03652267  3.05753666  3.07855066  3.09956466  3.12057866  3.14159265]

以上是关于Python Matplotlib模块--pylab的主要内容,如果未能解决你的问题,请参考以下文章

(转)}python之matplotlib模块

Python中matplotlib模块解析

Python可视化的扩展模块matplotlib的简单应用

谈谈Python实战数据可视化之matplotlib模块(实战篇)

python怎么装matplotlib

Python Matplotlib模块--pyplot