python特殊线程:ThreadLocal

Posted Dylan CS

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python特殊线程:ThreadLocal相关的知识,希望对你有一定的参考价值。

1.ThreadLocal产生原因

  试想一个应用场景,例如flask中多个用户发起了多个http访问请求request,每个http请求就是一个独立线程,那么我们会有很多个线程,这些线程之间肯定要独立,才能保证每个请求的数据正确独立。

  那么,我们肯定每一个线程的request都是一个独立的局部变量对象

  1.传参方式:则将它作为参数传入函数处理,然而,随着业务和功能增多,可能有很多的函数来处理request,如果每个都用参数传递,未免太麻烦太多代码量,修改也麻烦,很不友好。

  2.不传参方式:但是如果使用全局变量,直接被函数处理,函数不用使用传参的方式,一个直观的的方法就是建立一个全局字典,保存进程 ID 到该进程局部变量的映射关系,运行中的线程可以根据自己的 ID 来获取本身拥有的数据。这样,就可以避免在函数调用中传递参数,如下示例:

global_data = {}
def show():
    cur_thread = threading.current_thread()
    print cur_thread.getName(), global_data[cur_thread]
 
def thread_cal():
    cur_thread = threading.current_thread()
    global_data[cur_thread] = 0
    for _ in xrange(1000):
        global_data[cur_thread] += 1
    show() # Need no local variable. Looks good.
...

  保存一个全局字典,然后将线程标识符作为key,相应线程的局部数据作为 value,这种做法并不完美。首先,每个函数在需要线程局部数据时,都需要先取得自己的线程ID,略显繁琐。更糟糕的是,这里并没有真正做到线程之间数据的隔离,因为每个线程都可以读取到全局的字典,每个线程都可以对字典内容进行更改。

  3.ThreadLocal方式:为了更好解决这个问题,python 线程库实现了 ThreadLocal 变量(很多语言都有类似的实现,比如Java)。ThreadLocal 真正做到了线程之间的数据隔离,并且使用时不需要手动获取自己的线程 ID,如下示例:

global_data = threading.local()
 
def show():
    print threading.current_thread().getName(), global_data.num
 
def thread_cal():
    global_data.num = 0
    for _ in xrange(1000):
        global_data.num += 1
    show()
 
threads = []
...
 
print "Main thread: ", global_data.__dict__ # {}

上面示例中,全局变量global_data是一个ThreadLocal类对象,每个线程都可以通过 global_data.num 获得自己独有的数据,相互之间隔离互不影响,每个线程读取到的 global_data 都不同,好像global_data拥有很多个分身,真正做到线程之间的隔离,ThreadLocal对象像全局变量一样使用简单,但是却拥有局部变量的数据隔离特性,因此是一种很特殊和强大的类。

以上是关于python特殊线程:ThreadLocal的主要内容,如果未能解决你的问题,请参考以下文章

Python多线程-ThreadLocal

ThreadLocal介绍

深入理解ThreadLocal

转-java-ThreadLocal

python 线程中的局部变量ThreadLocal

谈谈Java中的ThreadLocal