merage#
pandas提供了一个类似于关系数据库的连接(join)操作的方法<Strong>merage</Strong>,可以根据一个或多个键将不同DataFrame中的行连接起来,语法如下:
merge(left, right, how=‘inner‘, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=(‘_x‘, ‘_y‘), copy=True, indicator=False)
作为一个功能完善、强大的语言,python的pandas库中的merge()支持各种内外连接。
- left与right:两个不同的DataFrame
- how:指的是合并(连接)的方式有inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner
- on : 指的是用于连接的列索引名称。必须存在右右两个DataFrame对象中,如果没有指定且其他参数也未指定则以两个DataFrame的列名交集做为连接键
- left_on:左则DataFrame中用作连接键的列名;这个参数中左右列名不相同,但代表的含义相同时非常有用。
- right_on:右则DataFrame中用作 连接键的列名
- left_index:使用左则DataFrame中的行索引做为连接键
- right_index:使用右则DataFrame中的行索引做为连接键
- sort:默认为True,将合并的数据进行排序。在大多数情况下设置为False可以提高性能
- suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(‘_x‘,‘_y‘)
- copy:默认为True,总是将数据复制到数据结构中;大多数情况下设置为False可以提高性能
- indicator:在 0.17.0中还增加了一个显示合并数据中来源情况;如只来自己于左边(left_only)、两者(both)
sql中的
SELECT * FROM df1 INNER JOIN df2 ON df1.key = df2.key; 或 SELECT * FROM df1,df2 where df1.key=df2.key
pandas中用:
pd.merge(df1, df2, on=‘key‘)
然后就是各种外连接了:
pd.merge(df1, df2, on=‘key‘, how=‘left‘)
how变成left/right。全链接outer。
示例##
#coding=utf-8 from pandas import Series,DataFrame,merge import numpy as np data=DataFrame([{"id":0,"name":‘lxh‘,"age":20,"cp":‘lm‘},{"id":1,"name":‘xiao‘,"age":40,"cp":‘ly‘},{"id":2,"name":‘hua‘,"age":4,"cp":‘yry‘},{"id":3,"name":‘be‘,"age":70,"cp":‘old‘}]) data1=DataFrame([{"id":100,"name":‘lxh‘,‘cs‘:10},{"id":101,"name":‘xiao‘,‘cs‘:40},{"id":102,"name":‘hua2‘,‘cs‘:50}]) data2=DataFrame([{"id":0,"name":‘lxh‘,‘cs‘:10},{"id":101,"name":‘xiao‘,‘cs‘:40},{"id":102,"name":‘hua2‘,‘cs‘:50}]) print "单个列名做为内链接的连接键\r\n",merge(data,data1,on="name",suffixes=(‘_a‘,‘_b‘)) print "多列名做为内链接的连接键\r\n",merge(data,data2,on=("name","id")) print ‘不指定on则以两个DataFrame的列名交集做为连接键\r\n‘,merge(data,data2) #这里使用了id与name #使用右边的DataFrame的行索引做为连接键 ##设置行索引名称 indexed_data1=data1.set_index("name") print "使用右边的DataFrame的行索引做为连接键\r\n",merge(data,indexed_data1,left_on=‘name‘,right_index=True) print ‘左外连接\r\n‘,merge(data,data1,on="name",how="left",suffixes=(‘_a‘,‘_b‘)) print ‘左外连接1\r\n‘,merge(data1,data,on="name",how="left") print ‘右外连接\r\n‘,merge(data,data1,on="name",how="right") data3=DataFrame([{"mid":0,"mname":‘lxh‘,‘cs‘:10},{"mid":101,"mname":‘xiao‘,‘cs‘:40},{"mid":102,"mname":‘hua2‘,‘cs‘:50}]) #当左右两个DataFrame的列名不同,当又想做为连接键时可以使用left_on与right_on来指定连接键 print "使用left_on与right_on来指定列名字不同的连接键\r\n",merge(data,data3,left_on=["name","id"],right_on=["mname","mid"])
输出为:
单个列名做为内链接的连接键 age cp id_a name cs id_b 0 20 lm 0 lxh 10 100 1 40 ly 1 xiao 40 101 多列名做为内链接的连接键 age cp id name cs 0 20 lm 0 lxh 10 不指定on则以两个DataFrame的列名交集做为连接键 age cp id name cs 0 20 lm 0 lxh 10 使用右边的DataFrame的行索引做为连接键 age cp id_x name cs id_y 0 20 lm 0 lxh 10 100 1 40 ly 1 xiao 40 101 左外连接 age cp id_a name cs id_b 0 20 lm 0 lxh 10 100 1 40 ly 1 xiao 40 101 2 4 yry 2 hua NaN NaN 3 70 old 3 be NaN NaN 左外连接1 cs id_x name age cp id_y 0 10 100 lxh 20 lm 0 1 40 101 xiao 40 ly 1 2 50 102 hua2 NaN NaN NaN 右外连接 age cp id_x name cs id_y 0 20 lm 0 lxh 10 100 1 40 ly 1 xiao 40 101 2 NaN NaN NaN hua2 50 102 使用left_on与right_on来指定列名字不同的连接键 age cp id name cs mid mname 0 20 lm 0 lxh 10 0 lxh
join方法提供了一个简便的方法用于将两个DataFrame中的不同的列索引合并成为一个DataFrame。
其中参数的意义与merge方法基本相同,只是join方法默认为左外连接how=left。
示例:
#coding=utf-8 from pandas import Series,DataFrame,merge data=DataFrame([{"id":0,"name":‘lxh‘,"age":20,"cp":‘lm‘},{"id":1,"name":‘xiao‘,"age":40,"cp":‘ly‘},{"id":2,"name":‘hua‘,"age":4,"cp":‘yry‘},{"id":3,"name":‘be‘,"age":70,"cp":‘old‘}],index=[‘a‘,‘b‘,‘c‘,‘d‘]) data1=DataFrame([{"sex":0},{"sex":1},{"sex":2}],index=[‘a‘,‘b‘,‘e‘]) print ‘使用默认的左连接\r\n‘,data.join(data1) #这里可以看出自动屏蔽了data中没有的index=e 那一行的数据 print ‘使用右连接\r\n‘,data.join(data1,how="right") #这里出自动屏蔽了data1中没有index=c,d的那行数据;等价于data1.join(data) print ‘使用内连接\r\n‘,data.join(data1,how=‘inner‘) print ‘使用全外连接\r\n‘,data.join(data1,how=‘outer‘)
结果为:
使用默认的左连接 age cp id name sex a 20 lm 0 lxh 0 b 40 ly 1 xiao 1 c 4 yry 2 hua NaN d 70 old 3 be NaN 使用右连接 age cp id name sex a 20 lm 0 lxh 0 b 40 ly 1 xiao 1 e NaN NaN NaN NaN 2 使用内连接 age cp id name sex a 20 lm 0 lxh 0 b 40 ly 1 xiao 1 使用全外连接 age cp id name sex a 20 lm 0 lxh 0 b 40 ly 1 xiao 1 c 4 yry 2 hua NaN d 70 old 3 be NaN e NaN NaN NaN NaN 2
还有一种连接方式:concat
concat方法相当于数据库中的全连接(UNION ALL),可以指定按某个轴进行连接,也可以指定连接的方式join(outer,inner 只有这两种)。
与数据库不同的是concat不会去重,要达到去重的效果可以使用drop_duplicates方法
concat(objs, axis=0, join=‘outer‘, join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True):
示例:
#coding=utf-8 from pandas import Series,DataFrame,concat df1 = DataFrame({‘city‘: [‘Chicago‘, ‘San Francisco‘, ‘New York City‘], ‘rank‘: range(1, 4)}) df2 = DataFrame({‘city‘: [‘Chicago‘, ‘Boston‘, ‘Los Angeles‘], ‘rank‘: [1, 4, 5]}) print ‘按轴进行内连接\r\n‘,concat([df1,df2],join="inner",axis=1) print ‘进行外连接并指定keys(行索引)\r\n‘,concat([df1,df2],keys=[‘a‘,‘b‘]) #这里有重复的数据 print ‘去重后\r\n‘,concat([df1,df2],ignore_index=True).drop_duplicates()
输出结果为:
按轴进行内连接 city rank city rank 0 Chicago 1 Chicago 1 1 San Francisco 2 Boston 4 2 New York City 3 Los Angeles 5 进行外连接并指定keys(行索引) city rank a 0 Chicago 1 1 San Francisco 2 2 New York City 3 b 0 Chicago 1 1 Boston 4 2 Los Angeles 5 去重后 city rank 0 Chicago 1 1 San Francisco 2 2 New York City 3 4 Boston 4 5 Los Angeles 5