1039. 多边形三角剖分的最低得分
Posted lxy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1039. 多边形三角剖分的最低得分相关的知识,希望对你有一定的参考价值。
题目链接:1039. 多边形三角剖分的最低得分
方法:区间dp
解题思路
区间 DP:最长回文子序列 最优三角剖分【基础算法精讲 22】
代码
回溯写法
class Solution
public:
int minScoreTriangulation(vector<int>& values)
int n = values.size();
int cache[n][n]; memset(cache, -1, sizeof(cache));
function<int(int, int)> dfs = [&](int i, int j) -> int
if (i + 1 == j) return 0;
if (cache[i][j] != -1) return cache[i][j];
int res = INT_MAX;
for (int k = i + 1; k < j; k ++ )
res = min(res, dfs(i, k) + dfs(k, j) + values[i] * values[k] * values[j]);
cache[i][j] = res;
return res;
;
return dfs(0, n - 1);
;
dp写法(递推)
class Solution
public:
int minScoreTriangulation(vector<int>& values)
int n = values.size();
int dp[n][n]; memset(dp, 0, sizeof(dp));
for (int i = n - 3; i >= 0; i -- )
for (int j = i + 2; j < n; j ++ )
dp[i][j] = INT_MAX;
for (int k = i + 1; k < j; k ++ )
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + values[i] * values[k] * values[j]);
return dp[0][n - 1];
;
复杂度分析
时间复杂度:\\(O(n^3)\\);
空间复杂度:\\(O(n^2)\\)。
在 Network Simulator ns2 中实现用于 Delaunay 三角剖分的 Boyer Watson 算法
【中文标题】在 Network Simulator ns2 中实现用于 Delaunay 三角剖分的 Boyer Watson 算法【英文标题】:Implementing Boyer Watson algorithm for Delaunay Triangulation in Network Simulator ns2 【发布时间】:2021-10-17 19:34:43 【问题描述】:我想在 Network Simulator ns2 中实现 Delaunay 三角剖分。到目前为止,我知道如何添加节点,如何让它们移动,如何设置流量,以及基本的东西。示例 tcl 脚本在 nam(network animator) 中完美运行。我很困惑,要为 Delaunay 三角剖分实现 Boyer Watson 算法,第一步是绘制一个包含所有节点的超级三角形。我正在使用无线节点并且能够获得随机分布节点的坐标。我也可以设法获得每个节点与所有其他节点之间的欧几里得距离。当我在 ns2 中搜索绘图时,所有内容都与 xgraph 有关。但我希望我能在 nam 中实现它。那么从哪里开始为我的无线传感器网络绘制一个超级三角形呢?我在想什么有问题吗?在下面发布 Boyer Watson 算法。请任何人帮忙?
// pointList is a set of coordinates defining the points to be triangulated
triangulation := empty triangle mesh data structure
add super-triangle to triangulation // must be large enough to completely contain all the points in pointList
for each point in pointList do // add all the points one at a time to the triangulation
badTriangles := empty set
for each triangle in triangulation do // first find all the triangles that are no longer valid due to the insertion
if point is inside circumcircle of triangle
add triangle to badTriangles
polygon := empty set
for each triangle in badTriangles do // find the boundary of the polygonal hole
for each edge in triangle do
if edge is not shared by any other triangles in badTriangles
add edge to polygon
for each triangle in badTriangles do // remove them from the data structure
remove triangle from triangulation
for each edge in polygon do // re-triangulate the polygonal hole
newTri := form a triangle from edge to point
add newTri to triangulation
for each triangle in triangulation // done inserting points, now clean up
if triangle contains a vertex from original super-triangle
remove triangle from triangulation
return triangulation
【问题讨论】:
【参考方案1】:类似这样的最简单方法是采用您拥有的算法并将其转录假设某些命令实现了棘手的位。然后选择缺少的命令之一并努力实现那。重复直到完成。
proc computeTriangulation pointList
# must be large enough to completely contain all the points in pointList
set superTriangle [computeSuperTriangle $pointList]
set triangulation [list $superTriangle]
foreach point $pointList
# add all the points one at a time to the triangulation
set badTriangles
set goodTriangles ; # INTRODUCED VARIABLE! This is convenient time to split the data
foreach triangle $triangulation
# first find all the triangles that are no longer valid due to the insertion
if [pointInCircumcircle $point $triangle]
lappend badTriangles $triangle
else
lappend goodTriangles $triangle
set polygon
foreach triangle $badTriangles
# find the boundary of the polygonal hole
foreachEdge edge $triangle
if [edgeIsUnshared $edge $badTriangles] && $edge ni $polygon
lappend polygon $edge
set triangulation $goodTriangles; # effectively removes bad triangles from the data structure
foreach edge $polygon
# re-triangulate the polygonal hole
lappend triangulation [formTriangle $edge $point]
# This is a standard pattern for doing list filtering where the filter is computed
return [lmap triangle $triangulation
# done inserting points, now clean up
if [hasVertexFrom $triangle $superTriangle]
continue
string cat $triangle
]
现在,只缺少computeSuperTriangle
、pointInCircumcircle
、foreachEdge
、edgeIsUnshared
、formTriangle
和 hasVertexFrom
。但是这些都比整体算法更容易写。 (您需要决定如何表示三角形;顶点列表可能就足够了。并且必须注意foreachEdge
始终以“一致”的形式返回边,否则您将得到非polygon
中的唯一元素;我建议对边缘中的点进行排序,以便最小坐标在前。毕竟,在该算法中,边缘中点的顺序是任意的。)
【讨论】:
以上是关于1039. 多边形三角剖分的最低得分的主要内容,如果未能解决你的问题,请参考以下文章
Leetcode-5047 Minimum Score Triangulation of Polygon(多边形三角剖分的最低得分)
Three.js 加载已经三角剖分的网格是不是比使用四边形的网格更高效?
检查点是不是位于球的边界/检查 Delaunay 三角剖分的唯一性