collection模块
在内置数据类型(dict、list、set、tuple)的基础上,collections模块提供额外的数据类型:
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
from collections import namedtuple Point = namedtuple(‘point‘,[‘x‘,‘y‘,‘z‘]) print(type(Point)) # <class ‘type‘> p1 = Point(1,2,3) p2 = Point(2,3,4) print(type(p1)) # <class ‘__main__.point‘> print(p1,p2) # print(p1,p2) # print(p1.x) #1 Card = namedtuple(‘card‘,[‘suits‘,‘number‘]) c1 = Card(‘黑桃‘,‘3‘) print(c1) #card(suits=‘黑桃‘, n1umber=‘3‘) print(c1.suits) # 黑桃
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。 deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈 (但是插入删除的信息已知,不安全) import queue q = queue.Queue() q.put([1,2]) q.put(3) print(q) #print(q.qsize()) print(q.qsize()) # 2 print(q.get()) #[1, 2] print(q.get()) #3 # print(q.get()) #得不到值,发生阻塞,停止执行 print(q.qsize()) #0 已取完 from collections import deque dq = deque([1,2]) print(dq) #deque([1, 2]) dq.append(‘a‘) #从后加 dq.appendleft(‘b‘) #从前加 print(dq) #deque([‘b‘, 1, 2, ‘a‘]) dq.insert(0,‘c‘) print(dq) #deque([‘c‘, ‘b‘, 1, 2, ‘a‘]) print(dq.pop()) # a 后 print(dq.popleft()) # c 前
from collections import OrderedDict od = OrderedDict([(‘a‘, 1), (‘b‘, 2), (‘c‘, 3)]) print(od) # OrderedDict的Key是有序的 OrderedDict([(‘a‘, 1), (‘b‘, 2), (‘c‘, 3)]) print(od[‘a‘]) for k in od: print(k) 注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict: >>> from collections import defaultdict >>> dd = defaultdict(lambda: ‘N/A‘) >>> dd[‘key1‘] = ‘abc‘ >>> dd[‘key1‘] # key1存在 ‘abc‘ >>> dd[‘key2‘] # key2不存在,返回默认值 ‘N/A‘ values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict[‘k1‘].append(value) else: my_dict[‘k2‘].append(value)
Counter类的目的是用来跟踪值出现的次数。 它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。 计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。 c = Counter(‘abcdeabcdabcaba‘) print c 输出:Counter({‘a‘: 5, ‘b‘: 4, ‘c‘: 3, ‘d‘: 2, ‘e‘: 1}) http://www.cnblogs.com/Eva-J/articles/7291842.html
time模块
格式化时间(Format String) —— 字符串: 给人看的。 ‘1999-12-06’
时间戳时间(timestamp) —— float时间 : 计算机看的,表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
结构化时间(struct_time) —— 元祖 :计算用的。(年,月,日,时,分,秒,一年中第几周(0 - 6(0表示周一)),一年中第几天(1-366),是否是夏令时(默认为0))
#导入时间模块 >>>import time #时间戳 >>>time.time() 1500875844.800804 #时间字符串 print(time.strftime("%Y-%m-%d %a %H:%M:%S")) #year month day HOUR MINUTE SECOND print(time.strftime("%Y/%m/%d %H:%M:%S")) #year month day HOUR MINUTE SECOND print(time.strftime("%m-%d %H:%M:%S")) #year month day HOUR MINUTE SECOND print(time.strftime("%H:%M:%S")) #year month day HOUR MINUTE SECOND print(time.strftime("%H:%M")) #year month day HOUR MINUTE SECOND #时间元组:localtime将一个时间戳转换为当前时区的struct_time time.localtime() time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=13, tm_min=59, tm_sec=37, tm_wday=0, tm_yday=205, tm_isdst=0)
#时间戳-->结构化时间 #time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 >>>time.gmtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) >>>time.localtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 #time.mktime(结构化时间) >>>time_tuple = time.localtime(1500000000) >>>time.mktime(time_tuple) 1500000000.0 #时间戳-->结构化时间 #time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 >>>time.gmtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) >>>time.localtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 #time.mktime(结构化时间) >>>time_tuple = time.localtime(1500000000) >>>time.mktime(time_tuple) 1500000000.0 #结构化时间 --> %a %b %d %H:%M:%S %Y串 #time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串 >>>time.asctime(time.localtime(1500000000)) ‘Fri Jul 14 10:40:00 2017‘ >>>time.asctime() ‘Mon Jul 24 15:18:33 2017‘ #时间戳 --> %a %d %d %H:%M:%S %Y串 #time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串 >>>time.ctime() ‘Mon Jul 24 15:19:07 2017‘ >>>time.ctime(1500000000) ‘Fri Jul 14 10:40:00 2017‘
import time true_time=time.mktime(time.strptime(‘2017-09-11 08:30:00‘,‘%Y-%m-%d %H:%M:%S‘)) time_now=time.mktime(time.strptime(‘2017-09-12 11:00:00‘,‘%Y-%m-%d %H:%M:%S‘)) dif_time=time_now-true_time struct_time=time.gmtime(dif_time) print(‘过去了%d年%d月%d天%d小时%d分钟%d秒‘%(struct_time.tm_year-1970,struct_time.tm_mon-1, struct_time.tm_mday-1,struct_time.tm_hour, struct_time.tm_min,struct_time.tm_sec))
random模块
>>> import random #随机小数 >>> random.random() # 大于0且小于1之间的小数 0.7664338663654585 >>> random.uniform(1,3) #大于1小于3的小数 1.6270147180533838 #随机整数 >>> random.randint(1,5) # 大于等于1且小于等于5之间的整数 >>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数 #随机选择一个返回 >>> random.choice([1,‘23‘,[4,5]]) # #1或者23或者[4,5] #随机选择多个返回,返回的个数为函数的第二个参数 >>> random.sample([1,‘23‘,[4,5]],2) # #列表元素任意2个组合 [[4, 5], ‘23‘] #打乱列表顺序 >>> item=[1,3,5,7,9] >>> random.shuffle(item) # 打乱次序 >>> item [5, 1, 3, 7, 9] >>> random.shuffle(item) >>> item [5, 9, 7, 1, 3]
import random def v_code(): code = ‘‘ for i in range(5): num=random.randint(0,9) alf=chr(random.randint(65,90)) add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())
os模块
‘‘‘ os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd os.curdir 返回当前目录: (‘.‘) os.pardir 获取当前目录的父目录字符串名:(‘..‘) os.makedirs(‘dirname1/dirname2‘) 可生成多层递归目录 os.removedirs(‘dirname1‘) 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推 os.mkdir(‘dirname‘) 生成单级目录;相当于shell中mkdir dirname os.rmdir(‘dirname‘) 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname os.listdir(‘dirname‘) 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.remove() 删除一个文件 os.rename("oldname","newname") 重命名文件/目录 os.stat(‘path/filename‘) 获取文件/目录信息 os.sep 输出操作系统特定的路径分隔符,win下为"\\\\",Linux下为"/" os.linesep 输出当前平台使用的行终止符,win下为"\\t\\n",Linux下为"\\n" os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为: os.name 输出字符串指示当前使用平台。win->‘nt‘; Linux->‘posix‘ os.system("bash command") 运行shell命令,直接显示 os.popen("bash command).read() 运行shell命令,获取执行结果 os.environ 获取系统环境变量 os.path os.path.abspath(path) 返回path规范化的绝对路径
os.path.split(path) 将path分割成目录和文件名二元组返回
os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素
os.path.basename(path) 返回path最后的文件名。如何path以/或\\结尾,那么就会返回空值。 即os.path.split(path)的第二个元素 os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False os.path.isabs(path) 如果path是绝对路径,返回True os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间 os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间 os.path.getsize(path) 返回path的大小 ‘‘‘
stat 结构: st_mode: inode 保护模式 st_ino: inode 节点号。 st_dev: inode 驻留的设备。 st_nlink: inode 的链接数。 st_uid: 所有者的用户ID。 st_gid: 所有者的组ID。 st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。 st_atime: 上次访问的时间。 st_mtime: 最后一次修改的时间。 st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。
sys模块
sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1) sys.version 获取Python解释程序的版本信息 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称
import sys try: sys.exit(1) except SystemExit as e: print(e)
序列化模块
序列化 —— 转向一个字符串数据类型
序列 —— 字符串
从数据类型 --> 字符串的过程 序列化
从字符串 --> 数据类型的过程 反序列化
应用:数据存储、网络传输
json # 数字 字符串 列表 字典 元组(用于字符串 和 python数据类型间进行转换)
通用的序列化格式
只有很少的一部分数据类型能够通过json转化成字符串
dumps和loads
import json f = open(‘json_file‘,‘w‘) dic = {‘k1‘:‘v1‘,‘k2‘:‘v2‘,‘k3‘:‘v3‘} json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件 f.close() f = open(‘json_file‘) dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回 f.close() print(type(dic2),dic2)
import json f = open(‘file‘,‘w‘) json.dump({‘国籍‘:‘中国‘},f) ret = json.dumps({‘国籍‘:‘中国‘}) f.write(ret+‘\\n‘) print(ret) #{"\\u56fd\\u7c4d": "\\u4e2d\\u56fd"} json.dump({‘国籍‘:‘美国‘},f,ensure_ascii=False) ret = json.dumps({‘国籍‘:‘美国‘},ensure_ascii=False) print(ret) #{"国籍": "美国"} f.write(ret+‘\\n‘) f.close()
pickle(用于python特有的类型 和 python的数据类型间进行转换)
所有的python中的数据类型都可以转化成字符串形式
pickle序列化的内容只有python能理解
且部分反序列化依赖python代码
注意:‘wb’ ‘rb’ import pickle dic = {‘k1‘:‘v1‘,‘k2‘:‘v2‘,‘k3‘:‘v3‘} str_dic = pickle.dumps(dic) print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic) print(dic2) #字典 import time struct_time = time.localtime(1000000000) print(struct_time) f = open(‘pickle_file‘,‘wb‘) pickle.dump(struct_time,f) f.close() f = open(‘pickle_file‘,‘rb‘) struct_time2 = pickle.load(f) print(struct_time2.tm_year)
shelve(shelve是python提供的序列化工具,比pickle更简单)
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。
序列化句柄: 使用句柄直接操作,非常方便
import shelve f = shelve.open(‘shelve_file‘) f[‘key‘] = {‘int‘:10, ‘float‘:9.5, ‘string‘:‘Sample data‘} #直接对文件句柄操作,就可以存入数据 f.close() import shelve f1 = shelve.open(‘shelve_file‘) existing = f1[‘key‘] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错 f1.close() print(existing) 限制:不支持多个应用同一时间往同一个DB进行写操作。 如果只进行读操作,我们可以让shelve通过只读方式打开DB import shelve f = shelve.open(‘shelve_file‘, flag=‘r‘) existing = f[‘key‘] f.close() print(existing)
在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。
import shelve f1 = shelve.open(‘shelve_file‘) print(f1[‘key‘]) f1[‘key‘][‘new_value‘] = ‘this was not here before‘ f1.close() f2 = shelve.open(‘shelve_file‘, writeback=True) print(f2[‘key‘]) f2[‘key‘][‘new_value‘] = ‘this was not here before‘ f2.close(