- Python语法学习 https://zhuanlan.zhihu.com/p/24162430
Python 安装库
安装Jupyter Notebook
- 先安装Python
- cmd 进入K:\\Jupyter Notebook Python\\Python_3.6.4\\Scripts目录
- cmd 输入 pip install jupyter 开始安装
- 运行 Python_3.6.4\\Scripts下的 jupyter-notebook.exe
安装numpy 数学包
-
到https://pypi.python.org/pypi/numpy#downloads 下载对应版本的numpy-1.14.0-cp36-none-win_amd64.whl 文件,复制到Scripts目录下安装
cmd运行 在K:\\Jupyter Notebook Python\\Python_3.6.4\\Scripts> -
pip install numpy-1.14.0-cp36-none-win_amd64.whl
安装绘图包matplotlib
- cmd 输入 pip install matplotlib
安装pandas 数据输入输出库
- cmd 输入 pip install pandas
安装seaborn绘图库
- cmd 输入 pip install seaborn
pip安装命令
-
安装 pip install jupyterthemes
-
安装最新版本 pip install --upgrade jupyterthemes
-
安装指定版本 pip install jupyterthemes==0.18.3
-
实际上pip instal 既可以安装本地.whl 也可以在线安装
-
若在线安装失败,如UnicodeDecodeError: \'gbk\' codec can\'t decode 这类问题。可能需要安装之前的指定版本
import math
math.sin(3)
0.1411200080598672
words = [\'cat\', \'window\', \'defenestrate\']
for w in words:
print("单词 "+w, "长度"+str(len(w)))
单词 cat 长度3
单词 window 长度6
单词 defenestrate 长度12
# 绘图包 matplotlib 的使用
# https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/
# http://codingpy.com/article/a-quick-intro-to-matplotlib/
import matplotlib.pyplot as plt # 需要先包含绘图包
import numpy as np
x = np.arange(20)
y = x**2
plt.plot(x, y)
plt.show() # 显示图形
#参考 http://codingpy.com/article/a-quick-intro-to-matplotlib/
$$ \\int_0^{+\\infty} x^2 dx $$
# 自定义曲线的外观
x = np.linspace(0, 2 * np.pi, 50)
plt.plot(x, np.sin(x), \'r-o\',
x, np.cos(x), \'g--\') # r g 颜色 - 线型
plt.show()
# 彩色映射散点图
x = np.random.rand(1000)
y = np.random.rand(1000)
size = np.random.rand(1000) * 50
colour = np.random.rand(1000)
plt.scatter(x, y, size, colour) # 散点图
plt.colorbar() #颜色栏
plt.show()
![](http://images2017.cnblogs.com/blog/151822/201801/151822-20180113001655894-342726755.png)
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
np.random.seed(42)
# 采样个数500
n_samples = 500
dim = 3
# 先生成一组3维正态分布数据,数据方向完全随机
samples = np.random.multivariate_normal(
np.zeros(dim),
np.eye(dim),
n_samples
)
# 通过把每个样本到原点距离和均匀分布吻合得到球体内均匀分布的样本
for i in range(samples.shape[0]):
r = np.power(np.random.random(), 1.0/3.0)
samples[i] *= r / np.linalg.norm(samples[i])
upper_samples = []
lower_samples = []
for x, y, z in samples:
# 3x+2y-z=1作为判别平面
if z > 3*x + 2*y - 1:
upper_samples.append((x, y, z))
else:
lower_samples.append((x, y, z))
fig = plt.figure(\'3D scatter plot\')
ax = fig.add_subplot(111, projection=\'3d\')
uppers = np.array(upper_samples)
lowers = np.array(lower_samples)
# 用不同颜色不同形状的图标表示平面上下的样本
# 判别平面上半部分为红色圆点,下半部分为绿色三角
ax.scatter(uppers[:, 0], uppers[:, 1], uppers[:, 2], c=\'r\', marker=\'o\')
ax.scatter(lowers[:, 0], lowers[:, 1], lowers[:, 2], c=\'g\', marker=\'^\')
plt.show()
# 参考 https://zhuanlan.zhihu.com/p/24309547
使用pandas数据输入输出库
参考 http://python.jobbole.com/80853/
import pandas as pd
df = pd.DataFrame({ \'A\' : 1.,
\'B\' : pd.Timestamp(\'20130102\'),
\'C\' : pd.Series(1, index=list(range(4)), dtype=\'float32\'),
\'D\' : pd.Series([1, 2, 1, 2], dtype=\'int32\'),
\'E\' : pd.Categorical(["test", "train", "test", "train"]),
\'F\' : \'foo\' })
df
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
0 | 1.0 | 2013-01-02 | 1.0 | 1 | test | foo |
1 | 1.0 | 2013-01-02 | 1.0 | 2 | train | foo |
2 | 1.0 | 2013-01-02 | 1.0 | 1 | test | foo |
3 | 1.0 | 2013-01-02 | 1.0 | 2 | train | foo |
df.B
0 2013-01-02
1 2013-01-02
2 2013-01-02
3 2013-01-02
Name: B, dtype: datetime64[ns]
使用Seaborn绘图库
Seaborn本质上使用Matplotlib作为核心库,默认情况下就能创建赏心悦目的图
# http://python.jobbole.com/80853/
import seaborn as sns
# Load one of the data sets that come with seaborn
tips = sns.load_dataset("tips")
sns.jointplot("total_bill", "tip", tips, kind=\'reg\');
tips.head()
total_bill | tip | sex | smoker | day | time | size | |
---|---|---|---|---|---|---|---|
0 | 16.99 | 1.01 | Female | No | Sun | Dinner | 2 |
1 | 10.34 | 1.66 | Male | No | Sun | Dinner | 3 |
2 | 21.01 | 3.50 | Male | No | Sun | Dinner | 3 |
3 | 23.68 | 3.31 | Male | No | Sun | Dinner | 2 |
4 | 24.59 | 3.61 | Female | No | Sun | Dinner | 4 |
sns.lmplot("total_bill", "tip", tips, col="smoker");
其它参考
http://blog.csdn.net/qq_34264472/article/details/53814653
https://www.cnblogs.com/kylinlin/p/5236601.html
http://blog.csdn.net/u013082989/article/details/73278458
https://www.cnblogs.com/gczr/p/6767175.html
Python·Jupyter Notebook各种使用方法记录
http://blog.csdn.net/tina_ttl/article/details/51031113
Jupyter更换主题
https://github.com/dunovank/jupyter-themes
安装主题
- pip install jupyterthemes
若出现UnicodeDecodeError: \'gbk\' 中文问题,可安装之前的版本
pip install jupyterthemes==0.18.3
查看已安装带主题
- 命令行 jt -l
应用主题
- 命令行 jt -t onedork -f fira -fs 13
-fs 13 字体
回复原始状态
- jt -r
# 嵌入视频
from IPython.display import VimeoVideo
VimeoVideo("63250251",with=600, height=400)
File "<ipython-input-21-5e0fd48278da>", line 3
VimeoVideo("63250251",with=600, height=400)
^
SyntaxError: invalid syntax
# 交互图表
import ipywidgets
a=ipywidgets.IntSlider(value=5,min=0, max=10, step=1)
a
ipywidgets.Text()
# 嵌入HTML页面
from IPython.display import HTML
HTML(\'<iframe src="https://www.baidu.com" width=800 height=400></iframe>\')
# 运行外部.py程序
# %run xxxx/xxxx.py
# Geo-Json
安装jupyter lab Python IDE
- pip install jupyterlab
执行 jupyter lab