python学习第四节 迭代器 生成器 面向过程编程

Posted 银鑫

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python学习第四节 迭代器 生成器 面向过程编程相关的知识,希望对你有一定的参考价值。


1:什么是迭代


可以直接作用于for循环的对象统称为可迭代对象(Iterable)。 可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator)。 所有的Iterable均可以通过内置函数iter()来转变为Iterator。 对迭代器来讲,有一个__next()就够了。在你使用for 和
in 语句时,程序就会自动调用即将被处理的对象的迭代器对象,然后使用它的next__()方法,直到监测到一个StopIteration异常。

>>> L = [1,2,3]
>>> [x**2 for x in L]
[1, 4, 9]
>>> next(L)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ‘list‘ object is not an iterator
>>> I=iter(L)
>>> next(I)
1
>>> next(I)
2
>>> next(I)
3
>>> next(I)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

 

 

 

#1、为何要有迭代器?
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器

#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下
‘hello‘.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{‘a‘:1}.__iter__
{‘a‘,‘b‘}.__iter__
open(‘a.txt‘).__iter__

#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象

文件类型是迭代器对象
open(‘a.txt‘).__iter__()
open(‘a.txt‘).__next__()


#4、注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象



2:迭代器对象的使用

dic={‘a‘:1,‘b‘:2,‘c‘:3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True

print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志

#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:
try:
k=next(iter_dic)
print(dic[k])
except StopIteration:
break

#这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环

 

 

3:for循环

 

#基于for循环,我们可以完全不再依赖索引去取值了
dic={‘a‘:1,‘b‘:2,‘c‘:3}
for k in dic:
    print(dic[k])

#for循环的工作原理
#1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic
#2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码
#3: 重复过程2,直到捕捉到异常StopIteration,结束循环

 迭代器的优缺点

#优点:
  - 提供一种统一的、不依赖于索引的迭代方式
  - 惰性计算,节省内存
#缺点:
  - 无法获取长度(只有在next完毕才知道到底有几个值)
  - 一次性的,只能往后走,不能往前退



什么是生成器

 

#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码

def func():
    print(====>first)
    yield 1
    print(====>second)
    yield 2
    print(====>third)
    yield 3
    print(====>end)

g=func()
print(g) #<generator object func at 0x0000000002184360> 

生成器就是迭代器


g.__iter__
g.__next__
#2、所以生成器就是迭代器,因此可以这么取值
res=next(g)
print(res)
 

面向过程编程


技术分享图片
#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

#2、定义
面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式

#3、优点:复杂的问题流程化,进而简单化

#4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身

#5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd

#6、举例
流水线1:
用户输入用户名、密码--->用户验证--->欢迎界面

流水线2:
用户输入sql--->sql解析--->执行功能

 

以上是关于python学习第四节 迭代器 生成器 面向过程编程的主要内容,如果未能解决你的问题,请参考以下文章

python基础:迭代器生成器面向过程编程

python全栈开发-Day11 迭代器生成器面向过程编程

Python开发第五篇迭代器生成器面向过程编程

Python 第四篇:生成器与迭代器

迭代器和生成器,面向过程编程

第十一天:迭代器,生成器,面向过程的编程