1.函数复习总结
# 函数 —— 2天 # 函数的定义和调用 # def 函数名(形参): #函数体 #return 返回值 #调用 函数名(实参) # 站在形参的角度上 : 位置参数,*args,默认参数(陷阱),**kwargs # 站在实参的角度上 : 按照位置传,按照关键字传 # 返回值:没有返回值 返回一个值 返回多个值 # 接收返回值:没有返回值不接收,返回一个值用一个变量接收,返回多个值用一个变量或者对应数目的变量接收 # 闭包函数 —— 在内部函数引用外部函数的变量 # 装饰器函数—— 装饰器一定是闭包函数 # 装饰器的作用 : 在不改变原来函数的调用方式的情况下 在这个函数的前后添加新的功能 # 完美的符合了一个开发原则 :开放封闭原则 # 对扩展是开发的 # 对修改是封闭的 # 基础的装饰器 # from functools import wraps # def wrapper(func): # @wraps(func) # def inner(*args,**kwargs): # ‘‘‘在函数被调用之前添加的代码‘‘‘ # ret = func(*args,**kwargs) # func是被装饰的函数 在这里被调用 # ‘‘‘在函数被调用之后添加的代码‘‘‘ # return ret # return inner # 使用 —— @wrapper # @wrapper # def func(): #inner # pass # # func.__name__ # 带参数的装饰器 # @wrapper -- > @warapper(argument) # 三层嵌套函数 # def outer(形参): # def wrapper(func): # def inner(*args,**kwargs): # ‘‘‘在函数被调用之前添加的代码‘‘‘ # ret = func(*args,**kwargs) # func是被装饰的函数 在这里被调用 # ‘‘‘在函数被调用之后添加的代码‘‘‘ # return ret # return inner # return wrapper # @outer(True) # def func(): # pass # 多个装饰器装饰一个函数 # 俄罗斯套娃 #def wrapper1(func): # @wraps(func) # def inner(*args,**kwargs): # print(‘before 1‘) # print(‘******‘) # ret = func(*args,**kwargs) # func是被装饰的函数 在这里被调用 # ‘‘‘在函数被调用之后添加的代码‘‘‘ # return ret # def wrapper2(func): # @wraps(func) # def inner(*args,**kwargs): # print(‘before 2‘) # ret = func(*args,**kwargs) # func是被装饰的函数 在这里被调用 # ‘‘‘在函数被调用之后添加的代码‘‘‘ # return ret # @wrapper1 # @wrapper2 # def func(): # print(‘111‘) # 迭代器和生成器 —— 两天 # 内置函数 —— 两天
2.可迭代及可迭代协议
假如我现在有一个列表l=[‘a‘,‘b‘,‘c‘,‘d‘,‘e‘],我想取列表中的内容,有几种方式?
首先,我可以通过索引取值l[0],其次我们是不是还可以用for循环来取值呀?
你有没有仔细思考过,用索引取值和for循环取值是有着微妙区别的。
如果用索引取值,你可以取到任意位置的值,前提是你要知道这个值在什么位置。
如果用for循环来取值,我们把每一个值都取到,不需要关心每一个值的位置,因为只能顺序的取值,并不能跳过任何一个直接去取其他位置的值。
但你有没有想过,我们为什么可以使用for循环来取值?
for循环内部是怎么工作的呢?
要了解for循环是怎么回事儿,咱们还是要从代码的角度出发。
首先,我们对一个列表进行for循环。
for i in [1,2,3,4]: print(i)
上面这段代码肯定是没有问题的,但是我们换一种情况,来循环一个数字1234试试
for i in 1234 print(i) 结果: Traceback (most recent call last): File "test.py", line 4, in <module> for i in 1234: TypeError: ‘int‘ object is not iterable
看,报错了!报了什么错呢?“TypeError: ‘int‘ object is not iterable”,说int类型不是一个iterable,那这个iterable是个啥?
假如你不知道什么是iterable,我们可以翻翻词典,首先得到一个中文的解释,尽管翻译过来了你可能也不知道,但是没关系,我会带着你一步一步来分析。
首先,我们从报错来分析,好像之所以1234不可以for循环,是因为它不可迭代。那么如果“可迭代”,就应该可以被for循环了。
这个我们知道呀,字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的。
我们怎么来证明这一点呢?
from collections import Iterable l = [1,2,3,4] t = (1,2,3,4) d = {1:2,3:4} s = {1,2,3,4} print(isinstance(l,Iterable)) print(isinstance(t,Iterable)) print(isinstance(d,Iterable)) print(isinstance(s,Iterable))
结合我们使用for循环取值的现象,再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。
可迭代协议
可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。
3.迭代器
迭代器的概念 # 迭代器协议 —— 内部含有__next__和__iter__方法的就是迭代器 # 迭代器协议和可迭代协议 # 可以被for循环的都是可迭代的 # 可迭代的内部都有__iter__方法 # 只要是迭代器 一定可迭代 # 可迭代的.__iter__()方法就可以得到一个迭代器 # 迭代器中的__next__()方法可以一个一个的获取值 # for循环其实就是在使用迭代器 # iterator # 可迭代对象 # 直接给你内存地址 # print([].__iter__()) # print(range(10)) #for #只有 是可迭代对象的时候 才能用for #当我们遇到一个新的变量,不确定能不能for循环的时候,就判断它是否可迭代 # for i in l: # pass #iterator = l.__iter__() #iterator.__next__() #迭代器的好处: # 从容器类型中一个一个的取值,会把所有的值都取到。 # 节省内存空间 #迭代器并不会在内存中再占用一大块内存, # 而是随着循环 每次生成一个 # 每次next每次给我一个 # range # f # l = [1,2,3,45] # iterator = l.__iter__() # while True: # print(iterator.__next__()) # print(range(100000000000000)) # print(range(3)) # print(list(range(3))) # def func(): # for i in range(2000000): # i = ‘wahaha%s‘%i # return i # 生成器 —— 迭代器 # 生成器函数 —— 本质上就是我们自己写得函数 # 生成器表达式 l = [1,2,3,4,5] for i in l: print(i) if i == 2: break for i in l: print(i)
4.生成器
我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。
如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器。
Python中提供的生成器:
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
生成器Generator:
本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)
特点:惰性运算,开发者自定义