IO流中「线程」模型总结

Posted 知了一笑

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了IO流中「线程」模型总结相关的知识,希望对你有一定的参考价值。

客户端与服务端进行通信交互,可能是同步或者异步,服务端进行「流」处理时,可能是阻塞或者非阻塞模式,理逻辑看就是:读取数据-业务执行-应答写数据的形式;

IO流模块:经常看、经常用、经常忘;

一、基础简介

在IO流的网络模型中,以常见的「客户端-服务端」交互场景为例;

客户端与服务端进行通信「交互」,可能是同步或者异步,服务端进行「流」处理时,可能是阻塞或者非阻塞模式,当然也有自定义的业务流程需要执行,从处理逻辑看就是「读取数据-业务执行-应答写数据」的形式;

Java提供「三种」IO网络编程模型,即:「BIO同步阻塞」、「NIO同步非阻塞」、「AIO异步非阻塞」;

二、同步阻塞

1、模型图解

BIO即同步阻塞,服务端收到客户端的请求时,会启动一个线程处理,「交互」会阻塞直到整个流程结束;

这种模式如果在高并发且流程复杂耗时的场景下,客户端的请求响应会存在严重的性能问题,并且占用过多资源;

2、参考案例

服务端】启动ServerSocket接收客户端的请求,经过一系列逻辑之后,向客户端发送消息,注意这里线程的10秒休眠;

public class SocketServer01 
    public static void main(String[] args) throws Exception 
        // 1、创建Socket服务端
        ServerSocket serverSocket = new ServerSocket(8080);
        // 2、方法阻塞等待,直到有客户端连接
        Socket socket = serverSocket.accept();
        // 3、输入流,输出流
        InputStream inStream = socket.getInputStream();
        OutputStream outStream = socket.getOutputStream();
        // 4、数据接收和响应
        int readLen = 0;
        byte[] buf = new byte[1024];
        if ((readLen=inStream.read(buf)) != -1)
            // 接收数据
            String readVar = new String(buf, 0, readLen) ;
            System.out.println("readVar======="+readVar);
        
        // 响应数据
        Thread.sleep(10000);
        outStream.write("sever-8080-write;".getBytes());
        // 5、资源关闭
        IoClose.ioClose(outStream,inStream,socket,serverSocket);
    

客户端】Socket连接,先向ServerSocket发送请求,再接收其响应,由于Server端模拟耗时,Client处于长时间阻塞状态;

public class SocketClient01 
    public static void main(String[] args) throws Exception 
        // 1、创建Socket客户端
        Socket socket = new Socket(InetAddress.getLocalHost(), 8080);
        // 2、输入流,输出流
        OutputStream outStream = socket.getOutputStream();
        InputStream inStream = socket.getInputStream();
        // 3、数据发送和响应接收
        // 发送数据
        outStream.write("client-hello".getBytes());
        // 接收数据
        int readLen = 0;
        byte[] buf = new byte[1024];
        if ((readLen=inStream.read(buf)) != -1)
            String readVar = new String(buf, 0, readLen) ;
            System.out.println("readVar======="+readVar);
        
        // 4、资源关闭
        IoClose.ioClose(inStream,outStream,socket);
    

三、同步非阻塞

1、模型图解

NIO即同步非阻塞,服务端可以实现一个线程,处理多个客户端请求连接,服务端的并发能力得到极大的提升;

这种模式下客户端的请求连接都会注册到Selector多路复用器上,多路复用器会进行轮询,对请求连接的IO流进行处理;

2、参考案例

服务端】单线程可以处理多个客户端请求,通过轮询多路复用器查看是否有IO请求;

public class SocketServer01 
    public static void main(String[] args) throws Exception 
        try 
            //启动服务开启监听
            ServerSocketChannel socketChannel = ServerSocketChannel.open();
            socketChannel.socket().bind(new InetSocketAddress("127.0.0.1", 8989));
            // 设置非阻塞,接受客户端
            socketChannel.configureBlocking(false);
            // 打开多路复用器
            Selector selector = Selector.open();
            // 服务端Socket注册到多路复用器,指定兴趣事件
            socketChannel.register(selector, SelectionKey.OP_ACCEPT);
            // 多路复用器轮询
            ByteBuffer buffer = ByteBuffer.allocateDirect(1024);
            while (selector.select() > 0)
                Set<SelectionKey> selectionKeys = selector.selectedKeys();
                Iterator<SelectionKey> selectionKeyIter = selectionKeys.iterator();
                while (selectionKeyIter.hasNext())
                    SelectionKey selectionKey = selectionKeyIter.next() ;
                    selectionKeyIter.remove();
                    if(selectionKey.isAcceptable()) 
                        // 接受新的连接
                        SocketChannel client = socketChannel.accept();
                        // 设置读非阻塞
                        client.configureBlocking(false);
                        // 注册到多路复用器
                        client.register(selector, SelectionKey.OP_READ);
                     else if (selectionKey.isReadable()) 
                        // 通道可读
                        SocketChannel client = (SocketChannel) selectionKey.channel();
                        int len = client.read(buffer);
                        if (len > 0)
                            buffer.flip();
                            byte[] readArr = new byte[buffer.limit()];
                            buffer.get(readArr);
                            System.out.println(client.socket().getPort() + "端口数据:" + new String(readArr));
                            buffer.clear();
                        
                    
                
            
         catch (Exception e) 
            e.printStackTrace();
        
    

客户端】每隔3秒持续的向通道内写数据,服务端通过轮询多路复用器,持续的读取数据;

public class SocketClient01 
    public static void main(String[] args) throws Exception 
        try 
            // 连接服务端
            SocketChannel socketChannel = SocketChannel.open();
            socketChannel.connect(new InetSocketAddress("127.0.0.1", 8989));
            ByteBuffer writeBuffer = ByteBuffer.allocate(1024);
            String conVar = "client-hello";
            writeBuffer.put(conVar.getBytes());
            writeBuffer.flip();
            // 每隔3S发送一次数据
            while (true) 
                Thread.sleep(3000);
                writeBuffer.rewind();
                socketChannel.write(writeBuffer);
                writeBuffer.clear();
            
         catch (Exception e) 
            e.printStackTrace();
        
    

四、异步非阻塞

1、模型图解

AIO即异步非阻塞,对于通道内数据的「读」和「写」动作,都是采用异步的模式,对于性能的提升是巨大的;

这与常规的第三方对接模式很相似,本地服务在请求第三方服务时,请求过程耗时很大,会异步执行,第三方第一次回调,确认请求可以被执行;第二次回调则是推送处理结果,这种思想在处理复杂问题时,可以很大程度的提高性能,节省资源:

2、参考案例

服务端】各种「accept」、「read」、「write」动作是异步,通过Future来获取计算的结果;

public class SocketServer01 
    public static void main(String[] args) throws Exception 
        // 启动服务开启监听
        AsynchronousServerSocketChannel socketChannel = AsynchronousServerSocketChannel.open() ;
        socketChannel.bind(new InetSocketAddress("127.0.0.1", 8989));
        // 指定30秒内获取客户端连接,否则超时
        Future<AsynchronousSocketChannel> acceptFuture = socketChannel.accept();
        AsynchronousSocketChannel asyChannel = acceptFuture.get(30, TimeUnit.SECONDS);

        if (asyChannel != null && asyChannel.isOpen())
            // 读数据
            ByteBuffer inBuffer = ByteBuffer.allocate(1024);
            Future<Integer> readResult = asyChannel.read(inBuffer);
            readResult.get();
            System.out.println("read:"+new String(inBuffer.array()));

            // 写数据
            inBuffer.flip();
            Future<Integer> writeResult = asyChannel.write(ByteBuffer.wrap("server-hello".getBytes()));
            writeResult.get();
        

        // 关闭资源
        asyChannel.close();
    

客户端】相关「connect」、「read」、「write」方法调用是异步的,通过Future来获取计算的结果;

public class SocketClient01 
    public static void main(String[] args) throws Exception 
        // 连接服务端
        AsynchronousSocketChannel socketChannel = AsynchronousSocketChannel.open();
        Future<Void> result = socketChannel.connect(new InetSocketAddress("127.0.0.1", 8989));
        result.get();

        // 写数据
        String conVar = "client-hello";
        ByteBuffer reqBuffer = ByteBuffer.wrap(conVar.getBytes());
        Future<Integer> writeFuture = socketChannel.write(reqBuffer);
        writeFuture.get();

        // 读数据
        ByteBuffer inBuffer = ByteBuffer.allocate(1024);
        Future<Integer> readFuture = socketChannel.read(inBuffer);
        readFuture.get();
        System.out.println("read:"+new String(inBuffer.array()));

        // 关闭资源
        socketChannel.close();
    

五、Reactor模型

1、模型图解

这部分内容,可以参考「Doug Lea的《IO》」文档,查看更多细节;

1.1 Reactor设计原理

Reactor模式基于事件驱动设计,也称为「反应器」模式或者「分发者」模式;服务端收到多个客户端请求后,会将请求分派给对应的线程处理;

Reactor:负责事件的监听和分发;Handler:负责处理事件,核心逻辑「read读」、「decode解码」、「compute业务计算」、「encode编码」、「send应答数据」;

1.2 单Reactor单线程

【1】Reactor线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,并创建一个Handler对象来处理后续业务;

【3】如果不是连接请求事件,则Reactor会将该事件交由当前连接的Handler来处理;

【4】在Handler中,会完成相应的业务流程;

这种模式将所有逻辑「连接、读写、业务」放在一个线程中处理,避免多线程的通信,资源竞争等问题,但是存在明显的并发和性能问题;

1.3 单Reactor多线程

【1】Reactor线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,并创建一个Handler对象来处理后续业务;

【3】如果不是连接请求事件,则Reactor会将该事件交由当前连接的Handler来处理;

【4】在Handler中,只负责事件响应不处理具体业务,将数据发送给Worker线程池来处理;

【5】Worker线程池会分配具体的线程来处理业务,最后把结果返回给Handler做响应;

这种模式将业务从Reactor单线程分离处理,可以让其更专注于事件的分发和调度,Handler使用多线程也充分的利用cpu的处理能力,导致逻辑变的更加复杂,Reactor单线程依旧存在高并发的性能问题;

1.4 主从Reactor多线程

【1】 MainReactor主线程通过select监听客户端的请求事件,收到事件后通过Dispatch进行分发;

【2】如果是建立连接请求事件,Acceptor通过「accept」方法获取连接,之后MainReactor将连接分配给SubReactor;

【3】如果不是连接请求事件,则MainReactor将连接分配给SubReactor,SubReactor调用当前连接的Handler来处理;

【4】在Handler中,只负责事件响应不处理具体业务,将数据发送给Worker线程池来处理;

【5】Worker线程池会分配具体的线程来处理业务,最后把结果返回给Handler做响应;

这种模式Reactor线程分工明确,MainReactor负责接收新的请求连接,SubReactor负责后续的交互业务,适应于高并发的处理场景,是Netty组件通信框架的所采用的模式;

2、参考案例

服务端】提供两个EventLoopGroup,「ParentGroup」主要是用来接收客户端的请求连接,真正的处理是转交给「ChildGroup」执行,即Reactor多线程模型;

@Slf4j
public class NettyServer 
    public static void main(String[] args) 
        // EventLoop组,处理事件和IO
        EventLoopGroup parentGroup = new NioEventLoopGroup();
        EventLoopGroup childGroup = new NioEventLoopGroup();
        try 
            // 服务端启动引导类
            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.group(parentGroup, childGroup)
                    .channel(NioServerSocketChannel.class).childHandler(new ServerChannelInit());

            // 异步IO的结果
            ChannelFuture channelFuture = serverBootstrap.bind(8989).sync();
            channelFuture.channel().closeFuture().sync();
         catch (Exception e)
            e.printStackTrace();
         finally 
            parentGroup.shutdownGracefully();
            childGroup.shutdownGracefully();
        
    


class ServerChannelInit extends ChannelInitializer<SocketChannel> 
    @Override
    protected void initChannel(SocketChannel socketChannel) 
        // 获取管道
        ChannelPipeline pipeline = socketChannel.pipeline();
        // 编码、解码器
        pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8));
        pipeline.addLast(new StringEncoder(CharsetUtil.UTF_8));
        // 添加自定义的handler
        pipeline.addLast("serverHandler", new ServerHandler());
    


class ServerHandler extends ChannelInboundHandlerAdapter 
    /**
     * 通道读和写
     */
    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception 
        System.out.println("Server-Msg【"+msg+"】");
        TimeUnit.MILLISECONDS.sleep(2000);
        String nowTime = DateTime.now().toString(DatePattern.NORM_DATETIME_PATTERN) ;
        ctx.channel().writeAndFlush("hello-client;time:" + nowTime);
        ctx.fireChannelActive();
    
    @Override
    public void exceptionCaught(ChannelHandlerContext ctx,Throwable cause) throws Exception 
        cause.printStackTrace();
        ctx.close();
    

客户端】通过Bootstrap类,与服务器建立连接,服务端通过ServerBootstrap启动服务,绑定在8989端口,然后服务端和客户端进行通信;

public class NettyClient 
    public static void main(String[] args) 
        // EventLoop处理事件和IO
        NioEventLoopGroup eventLoopGroup = new NioEventLoopGroup();
        try 
            // 客户端通道引导
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.group(eventLoopGroup)
                    .channel(NioSocketChannel.class).handler(new ClientChannelInit());

            // 异步IO的结果
            ChannelFuture channelFuture = bootstrap.connect("localhost", 8989).sync();
            channelFuture.channel().closeFuture().sync();
         catch (Exception e)
            e.printStackTrace();
         finally 
            eventLoopGroup.shutdownGracefully();
        
    


class ClientChannelInit extends ChannelInitializer<SocketChannel> 
    @Override
    protected void initChannel(SocketChannel socketChannel) 
        // 获取管道
        ChannelPipeline pipeline = socketChannel.pipeline();
        // 编码、解码器
        pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8));
        pipeline.addLast(new StringEncoder(CharsetUtil.UTF_8));
        // 添加自定义的handler
        pipeline.addLast("clientHandler", new ClientHandler());
    


class ClientHandler extends ChannelInboundHandlerAdapter 
    /**
     * 通道读和写
     */
    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception 
        System.out.println("Client-Msg【"+msg+"】");
        TimeUnit.MILLISECONDS.sleep(2000);
        String nowTime = DateTime.now().toString(DatePattern.NORM_DATETIME_PATTERN) ;
        ctx.channel().writeAndFlush("hello-server;time:" + nowTime);
    
    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception 
        ctx.channel().writeAndFlush("channel...active");
    
    @Override
    public void exceptionCaught(ChannelHandlerContext ctx,Throwable cause) throws Exception 
        cause.printStackTrace();
        ctx.close();
    

六、参考源码

编程文档:
https://gitee.com/cicadasmile/butte-java-note

应用仓库:
https://gitee.com/cicadasmile/butte-flyer-parent

Io流中的其他流

数据输入输出流

数据输入流: DataInputStream

数据输出流: DataOutputStream

数据输入输出流的概述

数据输入流,让应用程序读取原始java数据类型从底层输入流中的一个独立于机器的方式。一个应用程序使用一个数据输出流来写数据,以后可以通过数据输入流读取。
输入流是不一定安全的多线程访问。线程安全是可选的,是在这个类中的方法的用户的责任。

特点: 可以写基本数据类型,可以读取基本数据类型

数据输入输出流的使用

写基本数据类型
dos.writeInt(45) ;
dos.writeChar(‘中‘);
dos.writeUTF("你好");

 读取数据
int a = dis.readInt() ;
System.out.println(a);

char ch = dis.readChar() ;
System.out.println(ch);

String str = dis.readUTF() ;
System.out.println(str);

演示

public class MyTest {
public static void main(String[] args) throws IOException {
    // 数据输入输出流:特点就是能够读写基本数据类型
    // writeData();
    //注意读取的顺序,刚才怎么写的,就怎么读
    DataInputStream in = new DataInputStream(new FileInputStream("a.txt"));
    boolean b = in.readBoolean();
    double v = in.readDouble();
    int i = in.readInt();
    char c = in.readChar();
    String s = in.readUTF();
    System.out.println(b);
    System.out.println(v);
    System.out.println(c);
    System.out.println(s);

    in.close();

    return;

}

private static void writeData() throws IOException {
    // 数据输入输出流:特点就是能够读写基本数据类型
    DataOutputStream out = new DataOutputStream(new FileOutputStream("a.txt"));
    out.writeBoolean(true);
    out.writeDouble(3.14);
    out.writeInt(1000);
    out.writeChar(‘a‘);
    out.writeUTF("薛晓燕");
    out.flush();
    out.close();
}

}

ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write("今天是个好日子".getBytes());
out.write("今天我要嫁给你了".getBytes());
//取出他缓存中的数据
byte[] bytes = out.toByteArray();
String s = new String(bytes);
System.out.println(s);
String s2 = out.toString();
System.out.println(s);
out.close();//此流无需关闭
}
}

内存操作流

操作字节数组

ByteArrayInputStream
ByteArrayOutputStream
此流关闭无效,所以无需关闭

演示

ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write("今天是个好日子".getBytes());
out.write("今天我要嫁给你了".getBytes());
//取出他缓存中的数据
byte[] bytes = out.toByteArray();
String s = new String(bytes);
System.out.println(s);
String s2 = out.toString();
System.out.println(s);
out.close();//此流无需关闭
}
}

操作字符数组

    CharArrayWrite
    CharArrayReader

演示

public class MyTest4 {
public static void main(String[] args) throws IOException {
//操作字符数组
//CharArrayWrite
//CharArrayReader

    CharArrayWriter charArrayWriter =new CharArrayWriter();
    charArrayWriter.write("abcd");
    charArrayWriter.write(new char[]{‘我‘,‘爱‘,‘你‘});
    char[] chars = charArrayWriter.toCharArray();
    String s1 = new String(chars);
    String s2 = String.valueOf(chars);
    System.out.println(s1);
    System.out.println(s2);

    String s = charArrayWriter.toString();
    System.out.println(s);

}

}

操作字符串

    StringWriter
    StringReader    

演示

public class MyTest5 {
public static void main(String[] args) {
//操作字符串
// StringWriter
//StringReader
StringWriter stringWriter = new StringWriter();
stringWriter.write("abc");
stringWriter.write("呵呵呵呵呵");
String s = stringWriter.toString();
System.out.println(s);

}

}

内存操作流的概述

一个 ByteArrayInputStream包含一个内部缓冲区包含的字节,可以从流中读取。一个内部计数器跟踪下一个字节是由 read提供的方法。
关闭ByteArrayInputStream没有影响。这个类中的方法可以在流一直没有产生一个IOException闭叫.

构造方法: public ByteArrayOutputStream()

打印流

打印流的特点

a: 打印流只能操作目的地,不能操作数据源(不能进行读取数据)
- b: 可以操作任意数据类型的数据 调用print() 方法可以写任意数据类型
  • c: 如果我们启用自动刷新,那么在调用println、printf 或 format 方法中的一个方法的时候,会完成自动刷新
    /**
    通过以下构造创建对象 能够启动自动刷新 然后调用println、printf 或 format 方法中的一个方法的时候,会完成自动刷新

    • public PrintWriter(OutputStream out, boolean autoFlush) 启动 自动刷新
    • public PrintWriter(Writer out, boolean autoFlush) 启动自动刷新
      */
  • d: 这个流可以直接对文件进行操作(可以直接操作文件的流: 就是构造方法的参数可以传递文件或者文件路径)

    演示

    public class MyTest {
    public static void main(String[] args) throws IOException {
    //打印流:只是写,不操作源文件 就是单个的一个流,只用来输出
    //字节打印流 PrintStream
    //字符打印流 PrintWriter
    PrintStream out2 = System.out; //他关联的设备是屏幕
    out2.println("abc");

    //这种方式关联的是文件
    PrintStream stream = new PrintStream(new File("c.txt"));
    
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.println("abc");
    stream.write("welcome".getBytes());
    
    stream.close();

    }
    }

PrintWriter实现自动刷新和换行

PrintWriter实现自动刷新和换行
PrintWriter pw = new PrintWriter(new FileWriter("printWriter2.txt") , true) ;
pw.println(true) ;
pw.println(100) ;
pw.println("中国") ;

如果启用了自动刷新,则只有在调用 println、printf 或 format 的其中一个方法时才可能完成此操作

演示

public class MyTest4 {
public static void main(String[] args) throws IOException {
//PrintWriter(OutputStream out, boolean autoFlush)
//通过现有的 OutputStream 创建新的 PrintWriter。
PrintWriter pw = new PrintWriter(new FileOutputStream("cc.txt"), true);
// pw.write("abc");
// 如果启用了自动刷新,则只有在调用 println、printf 或 format 的其中一个方法时才可能完成此操作
pw.println("abc");
pw.flush();
pw.close();

}

}

标准输入输出流

标准输入输出流概述

在System这个类中存在两个静态的成员变量:
  • public static final InputStream in: 标准输入流, 对应的设备是键盘

  • public static final PrintStream out: 标准输出流 , 对应的设备就是显示器
    System.in的类型是InputStream.
    System.out的类型是PrintStream是OutputStream的孙子类FilterOutputStream 的子类.

    二种方式实现键盘录入

    1.Scanner

    2.BufferedReader的readLine方法。

    BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

    演示

    public class MyTest {
    public static void main(String[] args) throws IOException {
    //键盘录入的第二种方式
    //Scanner sc = new Scanner(System.in);
    BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    while (true){
    System.out.println("请输入字符串");
    String s = reader.readLine();
    System.out.println(s);
    //自定义一个结束标记
    if("886".equals(s)){
    break;
    }
    }

    }
    }

    输出语句用字符缓冲流改进

    输出语句用字符缓冲流改进

/**

  • 获取System下的in成员变量
    */
    InputStream in = System.in ;

    /**

  • in是一个字节输入流对象,那么我们就可以通过这个字节输入流对象进行读取键盘录入的数据.
  • 那么我们既然要读取数据,之前我们讲解了两种读取数据的方式:
    1. 一次读取一个字节
    1. 一次读取一个字节数组
  • 那么我们在这个地方使用那种读取方式. 经过分析,这两种读取方式都不太合适.因为数据是客户通过键盘录入
  • 进来的,而我们希望直接读取一行数据. 而既然要读取一行数据,那么我们就需要使用readLine方法,而这个方法
  • 是属于BufferedReader的方法,而我们就需要创建一个BufferedReader对象进行读取数据.而我们这in有属于
  • 字节流,而创建BufferedReader对象的时候需要一个字符流,而我们就需要将这个字节流转换成字符流,那么既然
  • 要对其进行转换,那么就需要使用转换流. 需要使用InputStreamReader
    */

    随机访问流

    随机访问流概述

    RandomAccessFile概述 最大特点 能读能写
    RandomAccessFile类不属于流,是Object类的子类。但它融合了InputStream和OutputStream的功能。
    支持对随机访问文件的读取和写入。

    RandomAccessFile的父类是Object , 这个流对象可以用来读取数据也可以用来写数据.可以操作任意数据类型的数据.

    我们可以通过getFilePointer方法获取文件指针,并且可以通过seek方法设置文件指针

    序列化流和反序列化流

    序列化流的概述

    所谓的序列化:就是把对象通过流的方式存储到文件中.注意:此对象 要重写Serializable 接口才能被序列化
    反序列化:就是把文件中存储的对象以流的方式还原成对象
    序列化流: ObjectOutputStream
    反序列化流: ObjectInputStream
    像这样一个接口中如果没有方法,那么这样的接口我们将其称之为标记接口(用来给类打标记的,相当于猪肉身上盖个章)
    一个对象可以被序列化的前提是这个对象对应的类必须实现Serializable接口

    演示

    public class MyTest6 {
    public static void main(String[] args) throws Exception{
    ObjectInputStream stream = new ObjectInputStream(new FileInputStream("list.txt"));
    Object obj = stream.readObject();
    ArrayList<Student> list= (ArrayList<Student>) obj;
    Student student = list.get(2);
    System.out.println(student.getName()+"=="+student.getAge());
    }
    }
    class Student implements Serializable {
    private static final long serialVersionUID = 5760262756605700379L;
    //生成一个类的唯一id
    private String name;
    //transient 修饰成员变量后,此成员变量的就不会序列化到文件中
    //transient private int age;
    private int age;

    public Student() {
    }

    public Student(String name, int age) {
    this.name = name;
    this.age = age;
    }

    public String getName() {
    return name;
    }

    public void setName(String name) {
    this.name = name;
    }

    public int getAge() {
    return age;
    }

    public void setAge(int age) {
    this.age = age;
    }
    }

    如何解决序列化时候的×××警告线问题

    • 我们的一个类可以被序列化的前提是需要这个类实现Serializable接口,就需要给这个类添加一个标记.
    • 在完成序列化以后,序列化文件中还存在一个标记,然后在进行反序列化的时候,
      会验证这个标记和序列化前的标记是否一致,如果一致就正常进行反序列化,如果
    • 不一致就报错了. 而现在我们把这个类做了修改,将相当于更改了标记,而导致这两个标记不一致,就报错了.
    • 解决问题: 只要让这个两个标记一致,就不会报错了吧
    • 怎么让这两个标记一致呢? 不用担心,很简单,难道你们没有看见×××警告线吗? ctrl + 1 , 生成出来

      如何让对象的成员变量不被序列化

      使用transient关键字声明不需要序列化的成员变量

    private transient int age ;// 可以阻止成员变量的序列化使用transient

    Properties的概述

    的 Properties类代表一个持久的特性。的 Properties可以保存到流或流中加载。属性列表中的每个键和它的相应值是一个字符串。
    属性列表可以包含另一个属性列表作为它的“默认”;如果在原始属性列表中没有找到属性键,则搜索该第二个属性列表。

    • Properties 类表示了一个持久的属性集。
    • Properties 可保存在流中或从流中加载。
    • 属性列表中每个键及其对应值都是一个字符串。
    • Properties父类是Hashtable
    • 属于双列集合,这个集合中的键和值都是字符串 Properties不能指定泛型

      Properties的特殊功能使用

      public Object setProperty(String key,String value)
      public String getProperty(String key)
      public Set<String> stringPropertyNames()

      Properties的load()和store()功能

      Properties和IO流进行配合使用:

    • public void load(Reader reader): 读取键值对数据把数据存储到Properties中
  • public void store(Writer writer, String comments)把Properties集合中的键值对数据写入到文件中, comments注释

    演示

    public class MyTest2 {
    public static void main(String[] args) throws IOException {
    Properties properties = new Properties();
    properties.setProperty("武大", "金莲");
    properties.setProperty("武大2", "金莲2");
    properties.setProperty("武大3", "金莲3");
    //把集合中的数据,保存到文件中去
    properties.store(new FileWriter("data.properties"),null);
    }
    }

以上是关于IO流中「线程」模型总结的主要内容,如果未能解决你的问题,请参考以下文章

Io流中的其他流

终于有人把操作系统网络系统线程进程IO模型全部总结出来了

IO流的总结

关于响应编码在字符输出流和字节输出流中的总结

netty - 线程模型 reactor

netty - 线程模型 reactor