Spark MLlib速成宝典模型篇05决策树Decision Tree(Python版)

Posted 黎明程序员

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark MLlib速成宝典模型篇05决策树Decision Tree(Python版)相关的知识,希望对你有一定的参考价值。

目录

  决策树原理

  决策树代码(Spark Python)


 

决策树原理

   详见博文:http://www.cnblogs.com/itmorn/p/7918797.html

 返回目录

 

决策树代码(Spark Python) 

  

  代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1

 

# -*-coding=utf-8 -*-  
from pyspark import SparkConf, SparkContext
sc = SparkContext(\'local\')

from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils

# Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, \'data/mllib/sample_libsvm_data.txt\')
\'\'\'
每一行使用以下格式表示一个标记的稀疏特征向量
label index1:value1 index2:value2 ...

tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\\\n-1\\\\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> examples[0]
LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
>>> examples[1]
LabeledPoint(-1.0, (6,[],[]))
>>> examples[2]
LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
\'\'\'
# Split the data into training and test sets (30% held out for testing) 分割数据集,留30%作为测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3])

# Train a DecisionTree model. 训练决策树模型
#  Empty categoricalFeaturesInfo indicates all features are continuous. 空的categoricalFeaturesInfo意味着所有的特征都是连续的
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
                                     impurity=\'gini\', maxDepth=5, maxBins=32)

# Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(
    lambda lp: lp[0] != lp[1]).count() / float(testData.count())
print(\'Test Error = \' + str(testErr)) #Test Error = 0.0294117647059
print(\'Learned classification tree model:\')
print(model.toDebugString())
\'\'\'
DecisionTreeModel classifier of depth 2 with 5 nodes
  If (feature 406 <= 72.0)
   If (feature 100 <= 165.0)
    Predict: 0.0
   Else (feature 100 > 165.0)
    Predict: 1.0
  Else (feature 406 > 72.0)
   Predict: 1.0
\'\'\'
# Save and load model  保存和加载模型
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
print sameModel.predict(data.collect()[0].features) #0.0

 

 返回目录

 

以上是关于Spark MLlib速成宝典模型篇05决策树Decision Tree(Python版)的主要内容,如果未能解决你的问题,请参考以下文章

Spark MLlib速成宝典模型篇06随机森林Random Forests(Python版)

Spark MLlib速成宝典模型篇04朴素贝叶斯Naive Bayes(Python版)

Spark MLlib速成宝典模型篇02逻辑斯谛回归Logistic回归(Python版)

Spark MLlib速成宝典基础篇01Windows下spark开发环境搭建(Scala版)

机器学习速成宝典模型篇08支持向量机SVM(附python代码)

Spark mllib 决策树的统计信息