长达 1.7 万字的 explain 关键字指南!

Posted 陈树义

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了长达 1.7 万字的 explain 关键字指南!相关的知识,希望对你有一定的参考价值。

当你的数据里只有几千几万,那么 SQL 优化并不会发挥太大价值,但当你的数据里去到了几百上千万,SQL 优化的价值就体现出来了!因此稍微有些经验的同学都知道,怎么让 MySQL 查询语句又快又好是一件很重要的事情。要让 SQL 又快又好的前提是,我们知道它「病」在哪里,而 explain 关键字就是 MySQL 提供给我们的一把武器!

在我们所执行的 SQL 前面加上 explain 关键字,MySQL 就不会真正去执行这条语句,而是模拟优化器执行 SQL 查询语句,最后会输出一系列的指标告诉我们这条语句的性能如何,如下图所示。

mysql> explain select * from student where id = 1 \\G
******************************************************
           id: 1
  select_type: SIMPLE
        table: subject
   partitions: NULL
         type: const
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
******************************************************

总的来说,explain 关键字可以告诉我们下面这么多信息:

  1. 表的读取顺序如何
  2. 数据读取操作有哪些操作类型
  3. 哪些索引可以使用
  4. 哪些索引被实际使用
  5. 表之间是如何引用
  6. 每张表有多少行被优化器查询
    ......

今天,我们就来介绍 explain 关键字的各个指标的含义。系好安全带,准备发车了!

为了方便讲解,这里新建了几张表,并初始化了一些数据(建表语句见附录)。这些表的关系如下:

  • 一共有老师、学生、课程三个实体,分别为:teacher、student、course。
  • 三个实体间的关系分别为:老师教学生的关系(teacher_student)、学生的课程分数(student_course)。

ID 字段

ID 字段的值及其排列顺序,表明 MySQL 执行时从各表取数据的顺序。一般情况下遵循下面两个原则:

  • ID 相同的组,其执行优先级按照其顺序由上到下。
  • ID 越大的组,其执行优先级越高。

对于下面这个例子:

EXPLAIN SELECT
	teacher.* 
FROM
	teacher,
	teacher_student 
WHERE
	teacher_student.student_name = \'s001\' 
	AND teacher.NAME = teacher_student.teacher_name

该例子的输出为:

上面的输出一共有 2 条记录,其 ID 都为 1,这表示其归为一组。对于 ID 相同的组,MySQL 按照顺序从上到下执行,即:先拿 teacher_student 表的数据,再拿 teacher 表的数据。

再来看下面这个例子:

EXPLAIN SELECT
	* 
FROM
	teacher 
WHERE
	NAME IN ( SELECT teacher_name FROM teacher_student WHERE student_name = \'S002\' )

该例子的输出为:

上面的输出一共有 3 条记录,其中第 1、2 条的 ID 相同,第 3 条 ID 不同。那么其执行顺序就是 ID 值越大,其越早执行。ID 相同的,按顺序执行。上面的例子,最早拿 teacher_student 表的数据,之后是一个子查询组成的表,最后拿 teacher 表的数据。结合 SQL 分析,这也符合我们的常识。因为我们必须先把子查询的值算出来,因此需要先把 teacher_student 表里的数据拿出来,之后才可以拿去 teacher 表里查询。

select_type 字段

select_type 字段表示该 SQL 是什么查询类型,一共有以下 6 种:

  • SIMPLE:简单查询,不包含子查询或 union 查询
  • PRIMARY:主键查询
  • SUBQUERY:在 select 或 where 中包含子查询
  • DERIVED:from 中包含子查询
  • UNION:
  • UNION RESULT

SIMPLE

简单查询,不包含子查询或 union 查询。

-- 查询T001老师都教了哪些学生
EXPLAIN SELECT
	student.* 
FROM
	teacher,
	teacher_student,
	student 
WHERE
	teacher.NAME = \'T001\' 
	AND teacher.NAME = teacher_student.teacher_name 
	AND teacher_student.student_name = student.NAME

可以看出其 3 个查询都是简单(SIMPLE)查询。因为 ID 相同,所以其查询顺序是按顺序来的。首先从 teacher 表中取出数据,之后从 student 表取出数据,最后 teacher_student 表取数据。

PRIMARY

一般情况下,如果查询中包含了任何复杂的子查询,那么最外层查询会被标记为主查询。

-- PRIMARY 查询哪些老师教授了选修数学课的学生
EXPLAIN SELECT
	* 
FROM
	teacher 
WHERE
	NAME IN ( SELECT teacher_name FROM teacher_student WHERE student_name = ( SELECT student_name FROM student_course WHERE course_name = \'shuxue\' ) )

在上面的查询中,首先是执行 ID 为 3 的查询,即去 student_course 表取出选修了数学课的学生名字,之后再去进行最外层的查询。可以看到最外层查询的 select_type 为 PRIMARY。

SUBQUERY

在 select 或 where 中包含子查询,那么 select_type 会被标记为 SUBQUERY。以上面的查询为例:

-- PRIMARY 查询哪些老师教授了选修数学课的学生
EXPLAIN SELECT
	* 
FROM
	teacher 
WHERE
	NAME IN ( SELECT teacher_name FROM teacher_student WHERE student_name = ( SELECT student_name FROM student_course WHERE course_name = \'shuxue\' ) )

在该查询中,where 中包含了子查询,因此在 explain 中有一个 ID 为 3 的查询被标记为 SUBQUERY。

DERIVED

在 FROM 中包含子查询,那么 select_type 会被标记为 SUBQUERY。

UNION

类似包含 union 关键字的会被标记成 UNION 类型,这种查询方式比较少,这里不做深入讲解。

UNION RESULT

类似包含 union 关键字的会被标记成 UNION RESULT 类型,这种查询方式比较少,这里不做深入讲解。

type 字段

type 字段表示访问情况,通常用来衡量 SQL 的查询效率。其值的查询效率从最好到最差分别为:

  • NULL
  • system
  • const
  • eq_ref
  • ref
  • fulltext
  • ref_or_null
  • index_merge
  • unique_subquery
  • index_subquery
  • range
  • index
  • ALL

NULL

NULL 表示 MySQL 能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。

explain select max(id) from teacher

system

表只有一行记录(等于系统表),这是const类型的特列。

出现的情况较少,这里不深入介绍。

const

const 表示该表最多有一个匹配记录。

通常情况下是 SQL 中出现了主键索引或唯一索引。

explain select * from teacher where name = \'T002\'

上面例子中,teacher.name 字段为唯一索引字段,所以通过该字段只能唯一找到一条记录,因此其 type 类型为 const。

eq_ref

eq_ref 表示主键索引或唯一索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。

与 const 类型非常相似,唯一的区别是 eq_ef 通常出现在联表的情况下,而 const 通常出现在单表情况下。

EXPLAIN SELECT
	* 
FROM
	teacher,
	teacher_student 
WHERE
	teacher.NAME = teacher_student.teacher_name

从上面的执行结果可以看出,其首先全表扫描了 teacher_student 表,之后使用 teacher.name 唯一索引去将联合 teacher 表的每一条记录。

要注意的是,eq_ref 这种情况重点在于:读取本表中和关联表表中的每行组合成的一行。 如果并没有关联表中每行这个概念,那么就不会出现 eq_ref 这种类型。例如我在上面的 SQL 中加上 age 为 24 这个条件,即 SQL 为:

EXPLAIN SELECT
	* 
FROM
	teacher,
	teacher_student 
WHERE
	teacher.NAME = teacher_student.teacher_name and teacher.age = 24

执行计划变为:

会看到 type 类型都变为 ref 了,eq_ref 消失了。

ref

ref 表示使用了非唯一索引扫描,会返回匹配某个单独值的所有行。

与 const 非常类似,只不过 ref 会匹配到多个记录,而 const 则只会匹配到单个记录。

explain select * from teacher where age = 24

age 为普通索引,表中有 2 条记录。

表中数据为:

ref_or_null

类似ref,但是可以搜索值为NULL的行。

explain select * from teacher where age = 24 or age is null

当我们增加 age is null 查询条件后,其 type 字段就变成了 ref_or_null

index_merge

表示使用了索引合并的优化方法。

索引合并指的是:对多个索引分别进行条件扫描,然后将它们各自的结果进行合并。

EXPLAIN SELECT * from teacher where id = 1 or age = 24

执行计划为:

可以看到使用了 index_merge 的查询类型。在 teacher 表中 id 和 age 都是索引,其将两个字段的索引结果进行合并了。

range

range 表示检索给定范围的行,使用一个索引来选择行,key 列显示使用了哪个索引。

一般就是在你的 where 语句中出现 between、<>、in 等的范围查询。

EXPLAIN SELECT * FROM TEACHER where age between 10 and 20

执行计划为:

上面语句中,我们使用 between 进行范围查询,因此 type 类型为 range。

index

index 表示只遍历索引树,且只从索引树中获取数据。

EXPLAIN SELECT id, age FROM TEACHER 

上面 SQL 中的 id、age 都是索引字段,可以直接从索引树中读取。因此其 type 字段为 index,表示此次查询数据可以直接从索引树获取到。但是如果查询的字段不在索引树中,那么就是全表扫描了。例如:

EXPLAIN SELECT id, enter_time FROM TEACHER 

查询 SQL 的 enter_time 字段不是索引,所以上面的查询就变成了全表查询(ALL)。

ALL

ALL 表示该查询将遍历全表以找到匹配行,这是最糟糕的一种查询方式。

table 字段

表示数据来自哪张表

possible_keys 字段

显示可能应用在这张表中的索引,一个或多个。

查询涉及到的字段若存在索引,则该索引将被列出,但不一定被实际使用。

key 字段

实际使用到的索引,如果为NULL,则没有使用索引。

查询中若使用了覆盖索引(查询的列刚好是索引),则该索引仅出现在key列表。

select * from teacher where name = \'T001\'

上面这个查询中,key 字段显示使用了 udx_name 这个索引,也就是 name 这个字段作为索引。

key_len 字段

这一列显示了 mysql 在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些列。 举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成,并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执行索引查找。

mysql> explain select * from film_actor where film_id = 2;
+----+-------------+------------+------+-------------------+-------------------+---------+-------+------+-------------+
| id | select_type | table      | type | possible_keys     | key               | key_len | ref   | rows | Extra       |
+----+-------------+------------+------+-------------------+-------------------+---------+-------+------+-------------+
|  1 | SIMPLE      | film_actor | ref  | idx_film_actor_id | idx_film_actor_id | 4       | const |    1 | Using index |
+----+-------------+------------+------+-------------------+-------------------+---------+-------+------+-------------+

key_len计算规则如下:

字符串

  • char(n):n字节长度
  • varchar(n):2字节存储字符串长度,如果是utf-8,则长度 3n + 2

数值类型

  • tinyint:1字节
  • smallint:2字节
  • int:4字节
  • bigint:8字节 

时间类型

  • date:3字节
  • timestamp:4字节
  • datetime:8字节

其他

如果字段允许为 NULL,需要1字节记录是否为 NULL

ref 字段

这一列显示了在 key 列记录的索引中,表查找值所用到的列或常量,常见的有:const(常量),func,NULL,字段名(例:film.id)。

rows 列

这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。

Extra 列

这一列展示的是额外信息。

distinct

一旦mysql找到了与行相联合匹配的行,就不再搜索了。

mysql> explain select distinct name from film left join film_actor on film.id = film_actor.film_id;
+----+-------------+------------+-------+-------------------+-------------------+---------+--------------+------+------------------------------+
| id | select_type | table      | type  | possible_keys     | key               | key_len | ref          | rows | Extra                        |
+----+-------------+------------+-------+-------------------+-------------------+---------+--------------+------+------------------------------+
|  1 | SIMPLE      | film       | index | idx_name          | idx_name          | 33      | NULL         |    3 | Using index; Using temporary |
|  1 | SIMPLE      | film_actor | ref   | idx_film_actor_id | idx_film_actor_id | 4       | test.film.id |    1 | Using index; Distinct        |
+----+-------------+------------+-------+-------------------+-------------------+---------+--------------+------+------------------------------+

Using index

这表示查找某个表的时候,所需要的信息直接从索引就可以拿到,而不需要再访问行记录。

mysql> explain select id from film order by id;
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | film  | index | NULL          | PRIMARY | 4       | NULL |    3 | Using index |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+ 

上面例子中,我只是选择了 id 列,这个列本身是索引,其信息直接在索引树中就可以拿到,因此不需要再访问行记录。

Using where

mysql 服务器将在存储引擎检索行后再进行过滤。就是先读取整行数据,再按 where 条件进行检查,符合就留下,不符合就丢弃。

mysql> explain select * from film where id > 1;
+----+-------------+-------+-------+---------------+----------+---------+------+------+--------------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows | Extra                    |
+----+-------------+-------+-------+---------------+----------+---------+------+------+--------------------------+
|  1 | SIMPLE      | film  | index | PRIMARY       | idx_name | 33      | NULL |    3 | Using where; Using index |
+----+-------------+-------+-------+---------------+----------+---------+------+------+--------------------------+

Using temporary

mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。

1. actor.name没有索引,此时创建了张临时表来distinct
mysql> explain select distinct name from actor;
+----+-------------+-------+------+---------------+------+---------+------+------+-----------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra           |
+----+-------------+-------+------+---------------+------+---------+------+------+-----------------+
|  1 | SIMPLE      | actor | ALL  | NULL          | NULL | NULL    | NULL |    2 | Using temporary |
+----+-------------+-------+------+---------------+------+---------+------+------+-----------------+

2. film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表
mysql> explain select distinct name from film;
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+
|  1 | SIMPLE      | film  | index | idx_name      | idx_name | 33      | NULL |    3 | Using index |
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+

Using filesort

MySQL 中无法利用索引完成的排序操作称为「文件排序」。

在MySQL中的ORDER BY有两种排序实现方式:

  1. 利用有序索引获取有序数据
  2. 文件排序

在explain中分析查询的时候,利用有序索引获取有序数据显示 Using index ,文件排序显示 Using filesort。至于什么时候使用索引排序,什么时候使用文件排序,这个问题太过于复杂,这里不做深入介绍。

1. actor.name未创建索引,会浏览actor整个表,保存排序关键字name和对应的id,然后排序name并检索行记录
mysql> explain select * from actor order by name;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra          |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
|  1 | SIMPLE      | actor | ALL  | NULL          | NULL | NULL    | NULL |    2 | Using filesort |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+

2. film.name建立了idx_name索引,此时查询时extra是using index
mysql> explain select * from film order by name;
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+
|  1 | SIMPLE      | film  | index | NULL          | idx_name | 33      | NULL |    3 | Using index |
+----+-------------+-------+-------+---------------+----------+---------+------+------+-------------+

附录

explain速查表

建表语句

建表语句如下:

/*
 Navicat Premium Data Transfer

 Source Server         : localhost
 Source Server Type    : MySQL
 Source Server Version : 80019
 Source Host           : localhost:3306
 Source Schema         : test

 Target Server Type    : MySQL
 Target Server Version : 80019
 File Encoding         : 65001

 Date: 22/06/2020 08:59:15
*/

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- Table structure for course
-- ----------------------------
DROP TABLE IF EXISTS `course`;
CREATE TABLE `course` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `udx_name` (`name`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

-- ----------------------------
-- Records of course
-- ----------------------------
BEGIN;
INSERT INTO `course` VALUES (2, \'shuxue\');
INSERT INTO `course` VALUES (3, \'yingyu\');
INSERT INTO `course` VALUES (1, \'yuwen\');
COMMIT;

-- ----------------------------
-- Table structure for student
-- ----------------------------
DROP TABLE IF EXISTS `student`;
CREATE TABLE `student` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(20) DEFAULT NULL,
  `age` int DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `udx_name` (`name`),
  UNIQUE KEY `idx_age` (`age`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

-- ----------------------------
-- Records of student
-- ----------------------------
BEGIN;
INSERT INTO `student` VALUES (1, \'S001\', 24);
INSERT INTO `student` VALUES (2, \'S002\', 23);
INSERT INTO `student` VALUES (3, \'S003\', 22);
COMMIT;

-- ----------------------------
-- Table structure for student_course
-- ----------------------------
DROP TABLE IF EXISTS `student_course`;
CREATE TABLE `student_course` (
  `id` int NOT NULL AUTO_INCREMENT,
  `student_name` varchar(20) DEFAULT NULL,
  `course_name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_student_name` (`student_name`),
  KEY `idx_course_name` (`course_name`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

-- ----------------------------
-- Records of student_course
-- ----------------------------
BEGIN;
INSERT INTO `student_course` VALUES (1, \'S001\', \'yuwen\');
INSERT INTO `student_course` VALUES (2, \'S001\', \'shuxue\');
INSERT INTO `student_course` VALUES (3, \'S001\', \'yingyu\');
INSERT INTO `student_course` VALUES (4, \'S002\', \'yuwen\');
INSERT INTO `student_course` VALUES (5, \'S002\', \'shuxue\');
INSERT INTO `student_course` VALUES (6, \'S003\', \'yuwen\');
COMMIT;

-- ----------------------------
-- Table structure for teacher
-- ----------------------------
DROP TABLE IF EXISTS `teacher`;
CREATE TABLE `teacher` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(20) DEFAULT NULL,
  `enter_time` datetime DEFAULT NULL,
  `age` int DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `udx_name` (`name`),
  KEY `idx_age` (`age`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

-- ----------------------------
-- Records of teacher
-- ----------------------------
BEGIN;
INSERT INTO `teacher` VALUES (1, \'T001\', \'2020-06-16 21:51:54\', 12);
INSERT INTO `teacher` VALUES (2, \'T002\', \'2020-06-15 21:52:02\', 12);
INSERT INTO `teacher` VALUES (3, \'T003\', \'2020-06-14 21:52:08\', 24);
INSERT INTO `teacher` VALUES (4, \'T004\', \'2020-06-14 21:52:08\', 24);
COMMIT;

-- ----------------------------
-- Table structure for teacher_student
-- ----------------------------
DROP TABLE IF EXISTS `teacher_student`;
CREATE TABLE `teacher_student` (
  `id` int NOT NULL AUTO_INCREMENT,
  `teacher_name` varchar(20) DEFAULT NULL,
  `student_name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_teacher_name` (`teacher_name`),
  KEY `idx_student_name` (`student_name`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

-- ----------------------------
-- Records of teacher_student
-- ----------------------------
BEGIN;
INSERT INTO `teacher_student` VALUES (1, \'T001\', \'S001\');
INSERT INTO `teacher_student` VALUES (2, \'T001\', \'S002\');
INSERT INTO `teacher_student` VALUES (3, \'T001\', \'S003\');
INSERT INTO `teacher_student` VALUES (4, \'T002\', \'S001\');
INSERT INTO `teacher_student` VALUES (5, \'T002\', \'S002\');
INSERT INTO `teacher_student` VALUES (6, \'T003\', \'S001\');
COMMIT;

SET FOREIGN_KEY_CHECKS = 1;

参考资料

Navicat Explain 指南

来源: http://www.codesec.net/view/190762.html

EXPLAIN是查看mysql优化器如何决定执行查询的主要方法,这个功能具有局限性,以为它并总是会说出真相,但是却可以获得最好信息.

学会解释EXPLAIN,你就会了解MySQL优化器是如何工作,你才能去优化MySQL.

如何调用?

只需要在SELECT前面加上EXPLAIN即可.

在语句结尾(;之前)加上\G能够更清晰的查看.

需要说的是EXPLAIN只对SELECT查询作解释,INSERT,UPDATE,DELETE不会哦.

EXPLAIN中的列

id列一个标识SELECT所属行编号,如果在语句中没有子查询或联合,说明只有一个SELECT,于是这个列显示为1,否则内层的SELECT会顺序编号.

MySQL将SELECT查询分为简单和复杂类型,复杂类型可分为:简单子查询,所谓的派生表(在FROM子句中的子查询),UNION查询.

简单子查询:EXPLAIN SELECT (SELECT `uid` FROM `tips` limit 1) FROM `test_key` WHERE 1

所谓的派生表(在FROM子句中的子查询)EXPLAIN SELECT uid FROM (SELECT uid FROM user) as der.

select_type列:显示了对应还是简单还是复杂SELECT(如果是后者,则将会是三种复杂类型中的一种).

SIMPLE意味着查询中不包含子查询和UNION.如果查询中包含子查询或UNION,那么最外层的SELECT被标记为PRIMARY(也就是id列为1的)

其他标记:

SUBQUERY,包含在SELECT列表中的子查询(不在FROM子句中)被标记为此;

DERIVED,在FROM子句中的子查询被标记为此;

UNION,在UNION中的第二个和随后的SELECT被标记为此;如EXPLAIN SELECT 1 UNION ALL SELECT 1

UNION RESULT,用来从UNION的临时表检索结果的SELECT标记为UNION RESULT,如EXPLAIN SELECT 1 UNION ALL SELECT 1

table列:显示对应行正在访问哪个表

当FROM子句中有子查询或UNION时,table列是<derivedN>,其中N是id列对应的值

type列:就是MySQL决定如何查找表中行(一下从最差到最优排列)

ALL,全表扫描

index,跟全表扫描一样,知识MySQL在扫描表时按索引次序进行而不是行range,范围扫描,一个有限制的索引扫描,它开始于索引里的某一点,返回匹配这个值域的行(显而易见的范围扫描.即带有BETWEEN或在WHERE子句中带有>的查询,当MySQL使用索引去查找一系列值的时候,如IN()和OR列表,也为显示的范围扫描)

ref,一种索引访问也叫索引查找,他返回所有匹配某单个值的行,它可能会找到多个符合条件行(EXPLAIN SELECT tipname FROM `tips` WHERE uid=10984)

eq_ref,一种索引查找,他最多只返回一条符合条件的行.这种会在使用主键或者唯一性索引时看到.(EXPLAIN SELECT * FROM `tips` WHERE uid=12)

const和system,当MySQL能对查询的某部分进行优化并将其转换成一个常量时(EXPLAIN SELECT * FROM `tips` WHERE id=5)

NULL,这种访问方式意味着MySQL能在优化阶段分解查询语句,在执行阶段用不着在访问表或者索引(EXPLAIN SELECT max(id),min(id)FROM `tips`)

possible_keys列:这一列显示了查询可以使用哪些索引,是基于查询访问的列和使用的比较操作符来判断的.

key列:这一列显示了MySQL决定采用哪个索引来优化对该表的访问

key_len列:显示MySQL在索引里使用的字节数.举个例子就是在查询中使用到了主键,而主键的数据类型为INT,则为4,SMALLINT则为2

ref列:显示了之前的表在key列记录的索引中查询值所用到的列或常量.

row列:显示的是MySQL为了找到所需的值而要读取的行数.

Extra列:在此显示的是在其他列不适合显示的额外信息

Using index,MySQL将使用覆盖索引,以避免访问表(就是仅仅使用了索引中信息而没有读取表中)

Using where,意味着MySQL服务器将在存储引擎检索行后在进行过滤(将会通过WHERE条件来筛选存储引擎返回的记录)

Using temporary,意味着MySQL在对查询结果排序时会用到一个临时表.

Using filesort,意味着MySQL会对结果使用一个外部索引排序,而不是按索引次序从表里读出来.

Rangechecked for each record(indexmap:N),意味着没有好用的索引,新的索引将在联接的每一行上重新估算,N代表possible_keys列中索引的位图,并且是冗余的。

 

来源: http://www.2cto.com/database/201501/369135.html

实验环境:

1、sql工具:Navicat 2、sql数据库,使用openstack数据库作为示例


一、mysql索引查询

show index from instances

技术分享结果字段解释: vcmRlcj0="1" cellpadding="2" cellspacing="0">



二、验证Mysql的主键会自动创建索引? 创建一个没有主键的ttx_index数据库表:技术分享查询索引:技术分享结果显示没有索引。 
改变ttx_index数据库表字段id,将之设为主键,再次查询索引:技术分享技术分享
得出结论,在Mysql中,数据库主键会自动建立索引。 

三、Mysql性能优化利器:explain 1、首先查看instances数据库表的索引:技术分享
2、EXPLAIN 用法详解:

EXPLAIN SELECT * FROM instances

技术分享技术分享根据上述结果,可以此查询花了0.027ms,没有可用的索引。 

explain字段详解:

table:显示这一行的数据是关于哪张表的

type:这是重要的列,显示连接使用了何种类型。从最好到最差的连接类型为const、eq_reg、ref、range、indexhe和ALL

possible_keys:显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从WHERE语句中选择一个合适的语句

key: 实际使用的索引。如果为NULL,则没有使用索引。很少的情况下,MYSQL会选择优化不足的索引。这种情况下,可以在SELECT语句中使用USE INDEX(indexname)来强制使用一个索引或者用IGNORE INDEX(indexname)来强制MYSQL忽略索引

key_len:使用的索引的长度。在不损失精确性的情况下,长度越短越好

ref:显示索引的哪一列被使用了,如果可能的话,是一个常数

rows:MYSQL认为必须检查的用来返回请求数据的行数

Extra:关于MYSQL如何解析查询的额外信息。将在下表中讨论,但这里可以看到的坏的例子是Using temporary和Using filesort,意思MYSQL根本不能使用索引,结果是检索会很慢


extra列返回的描述的意义:

Distinct:一旦MYSQL找到了与行相联合匹配的行,就不再搜索了

Not exists: MYSQL优化了LEFT JOIN,一旦它找到了匹配LEFT JOIN标准的行,就不再搜索了

Range checked for each Record(index map:#):没有找到理想的索引,因此对于从前面表中来的每一个行组合,MYSQL检查使用哪个索引,并用它来从表中返回行。这是使用索引的最慢的连接之一

Using filesort: 看到这个的时候,查询就需要优化了。MYSQL需要进行额外的步骤来发现如何对返回的行排序。它根据连接类型以及存储排序键值和匹配条件的全部行的行指针来排序全部行

Using index: 列数据是从仅仅使用了索引中的信息而没有读取实际的行动的表返回的,这发生在对表的全部的请求列都是同一个索引的部分的时候

Using temporary 看到这个的时候,查询需要优化了。这里,MYSQL需要创建一个临时表来存储结果,这通常发生在对不同的列集进行ORDER BY上,而不是GROUP BY上

Where used 使用了WHERE从句来限制哪些行将与下一张表匹配或者是返回给用户。如果不想返回表中的全部行,并且连接类型ALL或index,这就会发生,或者是查询有问题不同连接类型的解释(按照效率高低的顺序排序)

system 表只有一行:system表。这是const连接类型的特殊情况

const:表中的一个记录的最大值能够匹配这个查询(索引可以是主键或惟一索引)。因为只有一行,这个值实际就是常数,因为MYSQL先读这个值然后把它当做常数来对待

eq_ref:在连接中,MYSQL在查询时,从前面的表中,对每一个记录的联合都从表中读取一个记录,它在查询使用了索引为主键或惟一键的全部时使用

ref:这个连接类型只有在查询使用了不是惟一或主键的键或者是这些类型的部分(比如,利用最左边前缀)时发生。对于之前的表的每一个行联合,全部记录都将从表中读出。这个类型严重依赖于根据索引匹配的记录多少—越少越好

range:这个连接类型使用索引返回一个范围中的行,比如使用>或<查找东西时发生的情况

index: 这个连接类型对前面的表中的每一个记录联合进行完全扫描(比ALL更好,因为索引一般小于表数据)

ALL:这个连接类型对于前面的每一个记录联合进行完全扫描,这一般比较糟糕,应该尽量避免


那么如何才能让sql走索引查询呢?

EXPLAIN SELECT * FROM instances WHERE id=1


技术分享从上图可以,该sql语句走了索引。因为该表中id为主键,mysql会自动创建索引,因此当将id作为where条件查询时,数据库会自动走索引。 
接下来实验,当不走索引还是查询id=1这条数据时候,会是如何?

SELECT id, display_name FROM instances WHERE id=1

技术分享 

EXPLAIN SELECT * FROM instances WHERE display_name = "vm1"



技术分享

结论:在查询时候,如果where条件中的字段有索引(走不走索引,取决于where条件中的字段),在执行sql语句时,mysql会自动走索引。 
但是有个问题是,在走不走索引,查询花费时间都是0.001ms,似乎没有得到性能提高?

SELECT COUNT(*) FROM instances

技术分享 
在数据库表中instance数据总条数才74条,因此索引没法发挥它的性能优势,接下来人为制造上w条数据:

insert instances(display_name) select display_name from instances

注:上述语句,可用来为数据库表指数形式插入新数据。技术分享 
再次查询总条数:

SELECT COUNT(*) FROM instances

技术分享 
这次数据已经有接近500w了。 再次验证上述索引性能问题: 
1、为了对比的真实性,将id=1的数据记录的display_name修改为唯一名字test_index_dispaly_name

SELECT id, display_name FROM instances WHERE id=1

技术分享 
2、不走索引查询:

SELECT * FROM instances WHERE display_name = ‘test_index_dispaly_name‘

技术分享 
3、通过id走索引查询:

SELECT * FROM instances WHERE id=1

技术分享 
结论:对于百万上亿级数据,走不走索引效率影响相当明显(效率差别都到万了)。 


4、哪些情况sql不会走索引?

时间关系,此处暂且未总结,后续有时间补上。若有需要请自行网上查找。

































以上是关于长达 1.7 万字的 explain 关键字指南!的主要内容,如果未能解决你的问题,请参考以下文章

长达两万字的Elasticsearch分布式集群运维方方面面总结 #yyds干货盘点#

肝了很久,冰河整理出这份4万字的SpringCloud与SpringCloudAlibaba学习笔记!!

Mysql前奏!!!先来个2万字的基础总结

Mysql前奏!!!2万字的基础总结

Mysql前奏!!!先来个2万字的基础总结

Mysql前奏!!!先来个2万字的基础总结