pandas常用

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas常用相关的知识,希望对你有一定的参考价值。

参考技术A 不会得到新的对象

索引后得到对象的直接赋值会更改源df,而df调用方法会产生一个新的df。

1 df []索引,一次只能对一个轴索引,

a. df[1:2]填范围时是 index的索引,

b. df[1]填一个值时对columns的索引

c. df[bool]常用的bool索引

2.df.loc 切片 column时用列名定位。

a. df[1]传一个时,只对index索引。

b.可以bool索引.不会有bool索引时的reindex警告。

3.df.iloc 切片,columns可以用坐标定位。传一个时,只对index索引。可以bool索引

1.pd.contact 通过axis空值是纵向还是横向合并。合并时必须是对齐的。产生一个新的对象。

2.merge mysql的join风格。内外链接,链接的主键

3.append 如df的追加一行,

df.corr()相关性

df.add()加法运算,运算前要对齐

df.gt,df.lt, df.ne 两个df之间的比较,输出bool值。

1.apply 可应用于 sl和df(选择轴),还有group对象的apply

2.sl的map方法

categories = 1: 'Alpha', 2: 'Beta', 3: 'Charlie'

3.applymap函数,applymap(categories.get)

columns和index

时间点,时间段,时间差,数字(index的类型)

1.df.rename('one': 'foo', 'two': 'bar', axis='columns') 重命名

2. ts2.reindex(ts.index) 重排索引,切片

3. reset_index把索引变成特征,增加一个新排列的索引

4 .df.loc[df.groupby("AAA")["BBB"].idxmin()]获取最小的坐标

1.Interval 数字间隔 Interval_range  一群数字间隔

2.RangeIndex 数字的迭代

3.Period 时间间隔 period_range  一群时间间隔 PeriodIndex

4.Timedelta 时间单位 timedelta_range 一群时间单位 timedelta_range

5.date_range 时间点的迭代 DatetimeIndex

1 分组后获取分组内排序第一的行

df.sort_values(by="BBB").groupby("AAA", as_index=False).first()

2分组后获取每个分组最小坐标的行

df.loc[df.groupby("AAA")["BBB"].idxmin()]

# 设置打印展示输出

pd.set_option('display.max_rows', None)

pd.set_option('display.max_columns', None)

pd.set_option('display.max_colwidth', 1000)

pd.set_option('display.width', 1000)

pandas常用函数汇总

参考技术A pandas官方文档:http://pandas.pydata.org/pandas-docs/stable/api.html

对常用函数做了汇总,每个函数的参数可能不是全的,但是常用的,不常用的没总结,如有问题,请不吝赐教,谢谢!

1、创建Series

      通用函数:pd.Series(values,index)

     1)pd.Series([1,2,3],index=[‘a’,‘b’,‘c‘])

     2)pd.Series(np.array([1,2,3]),index=[‘a’,‘b’,‘c‘])

     3)pd.Series( 'a':1,  'b':2,  'c':3)

        Series转字典:Series.to_dict()

     说明:Series的values参数是python中常见的一维数据类型。

2、属性

     1)Series.values --->array([1,2,3])

           Series的values是array类型

     2)Series.index--->index([‘a’,‘b’,‘c‘])

           未指定index时,自动生成 0-(N-1)的整数索引,

           指定 index时,使用指定索引。

 3、Series的索引与切片

       Series[0] / Series['a']  : Sereis可以位置索引或标签索引,也可以进行切片操作

1、创建DataFrame

    1) 创建DataFrame的通用函数:

     df = pd.DataFrame(values,index,columns)

     pd.dataFrame([[1,2,3],[4,5,6],[7,8,9]],index=['a','b','c'],columns=['bj','sh','sz'])

     pd.dataFrame(np.arange(1,10).reshape(3,3),index=['a','b','c'],columns=['bj','sh','sz'])

     pd.dataFrame('bj':[1,4,7],'sh':[2,5,8],'sz':[3,6,9],index=['a','b','c'])

说明:创建方法与Sries类似,Series的values参数是python中常见的一维数据类型,DataFrame的values参数是python中常见的二维数据类型。

    2) 通过网页中复制数据快捷创建

        import webbrowser

        link = 'https://www.tiobe.com/tiobe-index/'

        webbrowser.open(link)

        打开界面进行复制,将数据复制到粘贴板中

        df = pd.read_clipboard()   #从粘贴板中读取数据

    3)通过Series创建DataFrame

        df = pd.DataFrame([s1,s2,s3],columns=['bj','sh','sz'])

        注意:单独的s1,s2,s3是纵向排列的的Series,但是在DataFrame中是横向排列的。

        自己总结:Series除了打印出来是Series格式外,其他时候可以直接当作list来操作。

2、属性

     1)df.columns

        通过columns生成新的DataFrame

        df_new = pd.DataFrame(df,columns=['x1','x2'])

        或者df_new = df[['x1','x2']]

    2)df.shape  显示行列数

    3)df.head()   默认显示前5行

    4)df.tail()     默认显示后5行

3、获取DataFrame的列

     1)获取DataFrame某一列

          df.x1或df['x1']:返回值是Series,可以理解为一个DataFrame是由多个Series组成的。

      2) 获取DataFrame某几列

          df_new = df[['x1','x2','x3']]

4、为某列赋值

      1) df['x1'] = range(10)

      2) df['x1'] = numpy.arange(10)

      3) df['x1'] = pd.Series(np.arange(10))

      说明:类似于创建Series

 5、为某列对应的特定行重新赋值

        df['x1'] = pd.Series([2,3],index=[0,1])

        将列为x1,行索引为0和1的值改为2,3

 6、获取DadaFrame的行

      for row in DataFrame.iterrows():

              print(row[0],row[1])

      #每个row是一个元祖,包含2个元素,row[0]是整型索引,row[1]是Series,所以从行的角度也可以看出,一个DataFrame是由多个Series组成的。

 7、DataFrame的转置

      df_new = df.T

1、粘贴板的io

      df = pd.read_clipboard()

      df.to_clipboard()

 2、csv的io

       df.to_csv('xxx.csv')

       df = pd.read_csv('xxx.csv')

  3、json的io

       df.to_json()

       pd.read_json(df.to_json())

   4、excel的io

        df.to_excel('xx.xlsx')

        df = pd.read_excel('xx.xlsx')

   5、df = pd.read_sql('')

        df.to_sql('')

 1、iloc

      sub_df = df.iloc[10:20,:]  选取DataFrame的10-20行,所有列数据

      sub_df = df.iloc[10:20,0:2]

      说明:iloc函数是位置索引,与索引的名字无关。

   2、loc

      sub_df = df.loc[10:20,:'movie_name']

      说明:loc是标签索引,10,20,'movie_name'  都是索引名字,与位置无关。

1、Series.reindex(index=['x1','x2','x3'],fill_value=10)

      将df重新索引,并且将NaN空值用10进行填充

2、Series.reindex(index=range(15),method='ffill')

     前项填充,后面的值用前面的值进行填充

     通过reindex想到,如果想新增一个空列或者空行,可以用reindex方法,同样地,想减少某些行或者某些列,也可以用reindex方法。

      继reindex之后删除行列的函数操作

      Series.drop('A')   #删除'A'所对应的值

      DataFrame.drop(label,axis) 

      label可以是行名也可以是列名,label是行的话axis是0,label是列的话axis是1。

     ** 删除行还可以用 del df['A']

nan是numpy的一种数据类型,np.nan,float类型

任何数据与nan的运算结果都是nan

1、nan in Series

      Series.isnull()  -->返回value为True或者False的Series

      Series.notnull()  -->返回value为True或者False的Series

      Series.dropna()  -->返回删除nan值后的Series

      Series.fillna(method='ffill')  -->前项插值,按照前面的值填充后面的空值

2、nan in DataFrame

      df.isnull()  -->返回value为True或者False的DataFrame

      df.notnull()  -->返回value为True或者False的DataFrame

      df.dropna(axis=0/1,how='any/all',thresh=None)

      说明:axis表示删除行为nan或者列为nan;

                any表示只要有一个为空,all表示行中的每个元素或者列中的每个元素为空;

                thresh是阈值的意思,表示某行或者某列nan的个数达到阈值的个数时才删除该行或该列。

      df.fillna(value=1)  --->所有的空值都填充为1

      df.fillna(value=0:0,1:1,2:2) --->将0列的空值填为0,1列的空值填为1,2列的空值填为2,默认为填充列

      注意:fillna和dropna的特点,生成新的DataFrame,原来的DataFrame不变。

1、多重索引介绍

     Series = pd.Series(np.random.randn(6),index=[['1','1','1','2','2','2'],['a','b','c','a','b','c']])

    '1','2'为一级索引,'a','b','c'为二级索引

    df 可以看做是索引的'1','2'的Series

    Series['1']  -->Series

    Series['1']['a']  -->value

    Series[:,'a'] -->选择'1'和'2'中的'a'对应的值

2、多重索引格式转为二维DataFrame

    df = Series.unstack() -->转为二维DataFrame

3、多重索引在DataFrame中的操作

1、 map函数与apply函数、applymap函数的区别:

      1)map函数对Series中的每个元素作用;

      2)applymap函数对DataFrame中的每个元素作用;

      3)apply函数对对DataFrame和Series的一列做整体运算。

2、Series.replace(to_replace=[2,3,4],values=[20,30,40])  替换Series中多个值

    Series.replace(1:10,2:20)  将索引为1的值替换为10,将索引为2的值替换为20

    df.sum()  -->默认按照列进行求和,nan的值被忽略

    df.min()  -->默认按照列求最小值

    df.max()  -->默认按照列求最大值

    df.mean()  -->默认按照列求平均值

    df.describe()  -->默认按照列进行描述

    df.sum(axis=1)  -->按行求和,nan的值被忽略

    #axis=0表示对横轴进行操作,但是运算中表现为纵轴操作

    #axis=1表示对纵轴进行操作,但是运算中表现为横轴操作

 bins = [0,59,70,80,100],bins是分割范围

 score_cat = pd.cut(Series,bins)  --->得到catgory类型的数据

 DataFrame的分箱技术很棒啊!

 pd['catgory'] = pd.cut(df['a'],bins=[0,59,70,80,100],labels=['low','ok','good','great'])

 -->新增一列,将a列的值按照labels进行分类标记,good!!!

 #生成长度为3的随机字符串  pd.util.testing.rands(3)

1、按照一列分组

      g = df.groupby('city')

      g是分组类型数据,打印不出来,所以看不到,但是有属性和方法可以间接的了解

     1) g.groups  -->得到分的几个组,和每个组包含的索引

     2)g.get_group('BJ')  -->得到'BJ'所对应的组

     3)groupby = split +apply +combine

           g.mean()  -->求每组的平均值

           g.max()   -->求每组的最大值

           g.min()   -->求每组的最小值

           g.count()

           g.describe()

      4)g是一个可迭代对象,可以用list函数将其转化为list

          list(g) -- > [('组名1',DataFrame1),('组名2',DataFrame2),(),()]

          dict(list(g))  -->将其转化为字典

      同时可以通过for循环进行遍历操作:for item,desc in g:print(item,desc)

      #怪不得分组后不是DataFrame,因为元组的第一个元素是'分组名'。

2、按照多列分组

      g_new = df.groupby(['city','wind'])

      得到生成器((('分组1','分组2'),DataFrame),(),()...)

      g_new.get_group(('分组1','分组2'))

      for (name_1,name_2),group in g_new:

              print((name_1,name_2),group)

 g.mean()  -->求每组的平均值

 与g.agg('mean')方法一样

pd.pivot_table(df,index=['',''],aggfuc='sum',values=['',''])

index是分组的组名,values是透视表呈现结果的列,columns是values下的分解

#感觉透视表呈现的结果就是groupby+agg后的结果

#分析者需要对数据结构有一定的了解

df.sort_values(by='',ascending=True/False)[:10]  df可以索引

df.value_counts()  -->按值计数

df.['a'] = df['b'].apply(lambda x:x>0)  -->DataFrame中的True/False

通过g.size()可以看到被groupby之后的数据,得到的是一个Series

1、Series的排序:

    1)对值进行排序

    Series.sort_values()  --->直接对Series的值进行排序

    2)通过索引进行排序

    Series.sort_index() 

    #默认都是升序排列

2、DataFrame的排序

     df.sort_values(by='')  -->按照某列的顺序进行排序

    df['a'].sort_values()  -->返回对a列数据的排序结果,只返回a列

1、df.index = Series(['a','b','c'])  直接对index赋予新值

2、df.index = df.index.map(str.upper)

     map函数中只传入新的函数名即可

3、df.rename(index=str.upper,columns=str.lower)

      或者传递字典,进行一一转换

    pd.merge(df1,df2,on=None,how='left/right/inner/outer')

    pd.merge(df1,df2)  -->没有on参数默认先找相同的columns,然后在columns下找相同的values

    pd.merge(df1,df2,on='columns')  -->on参数是指按照指定列进行merge

    left:表示以左边的数据表为基准,进行填充右面的数据

    right:表示以右边的数据表为基准,填充左边的数据

    outer:以on的指定列的所有值为基准,填充两边的数据

    inner:默认inner,相同on指定的columns下的相同values对应的左右两边的数据

1、concat拼接

    pd.concat([Series1,Series2])

    pd.concat([df1,df2])  -- >上下叠加,将没有的列进行填充

2、combine组合

    Series1.combine_first(Series2)  -->用Series2的值去填充Series1中为空的值

    df1.combine_first(df2)  --->用df2将df1中的空值填充

    df['A'] = df['A'].apply(str.upper)  --->apply函数中也只输入函数名

    len(df)  -->求df的长度

    len(df['a'].unique())  -->查看a列中不重复数据的多少

    Series.duplicated()  -->返回一列True/False的Series

    Series.drop_duplicates()  -->删除重复值

    df.drop_duplicates('a',keep='first/last')

    df.drop_duplicates()  -->删除完全重复的行

    参数:'a'表示以a列为基准,删除重复值

              first表示保留第一个,last表示保留最后一个

    data_list = pd.date_range(start,end,period='D',freq)

    period='D',以天为单位

    freq = 'W' 以周为单位

    freq = 'W-Mon'以每周一位单位

    freq = '5H'  以5h为单位

    以data_range作为索引提取数据比较简单

    df[datetime(2017,9,1)]

    df['2017-09-01']

    df['20170901']

    df['201709']

    对时间序列数据进行分组聚合操作:

    s1.resample('M').mean()  -->以月为单位进行采样,然后求每组的平均值

    s1.resample('H').ffill()  -->前项填充

    s1.resample('H').bfill()  -->后项填充

补充:1)jupyter中可以执行linux命令,太棒了!

                !ls

                !more xxx.csv

                !pwd  等等

           2)jupyter 查看函数帮助的快捷键:摁住shift + tab  棒!!!

以上是关于pandas常用的主要内容,如果未能解决你的问题,请参考以下文章

Pandas总结第三节 Pandas 的显示设置(总结所有常用显示设置)

pandas数据分析-常用命令

11.pandas里面的一些常用方法

pandas常用函数说明及速查表

一些Pandas常用方法

pandas 常用函数整理