python基础之面对对象

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python基础之面对对象相关的知识,希望对你有一定的参考价值。

Python3 面向对象

Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。

如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于你更容易的学习Python的面向对象编程。

接下来我们先来简单的了解下面向对象的一些基本特征。

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。

面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。

在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。

面向对象的设计思想是抽象出Class,根据Class创建Instance。

面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。

概述

  • 面向过程:根据业务逻辑从上到下写垒代码
  • 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
  • 面向对象:对函数进行分类和封装,让开发“更快更好更强...”

面向过程编程最易被初学者接受,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,即:将之前实现的代码块复制到现需功能处。

面向对象技术简介

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据。
  • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 实例变量:定义在方法中的变量,只作用于当前实例的类。
  • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化:创建一个类的实例,类的具体对象。
  • 方法:类中定义的函数。
  • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

和其它编程语言相比,Python 在尽可能不增加新的语法和语义的情况下加入了类机制。

Python中的类提供了面向对象编程的所有基本功能:类的继承机制允许多个基类,派生类可以覆盖基类中的任何方法,方法中可以调用基类中的同名方法。

对象可以包含任意数量和类型的数据。

创建类和对象

面向对象编程是一种编程方式,此编程方式的落地需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” 的使用。

  类就是一个模板,模板里可以包含多个函数,函数里实现一些功能

  对象则是根据模板创建的实例,通过实例对象可以执行类中的函数

技术分享

  • class是关键字,表示类
  • 创建对象,类名称后加括号即可

ps:类中的函数第一个参数必须是self(详细见:类的三大特性之封装)
   类中定义的函数叫做 “方法”

1
2
3
4
5
6
7
8
9
10
11
12
13
# 创建类
class Foo:
     
    def Bar(self):
        print ‘Bar‘
 
    def Hello(self, name):
        print ‘i am %s‘ %name
 
# 根据类Foo创建对象obj
obj = Foo()
obj.Bar()            #执行Bar方法
obj.Hello(‘wupeiqi‘) #执行Hello方法 

诶,你在这里是不是有疑问了?使用函数式编程和面向对象编程方式来执行一个“方法”时函数要比面向对象简便

  • 面向对象:【创建对象】【通过对象执行方法】
  • 函数编程:【执行函数】

观察上述对比答案则是肯定的,然后并非绝对,场景的不同适合其的编程方式也不同。

总结:函数式的应用场景 --> 各个函数之间是独立且无共用的数据

面向对象三大特性

面向对象的三大特性是指:封装、继承和多态。

一、封装

封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容。

所以,在使用面向对象的封装特性时,需要:

  • 将内容封装到某处
  • 从某处调用被封装的内容

第一步:将内容封装到某处

技术分享

 self 是一个形式参数,当执行 obj1 = Foo(‘wupeiqi‘, 18 ) 时,self 等于 obj1

                              当执行 obj2 = Foo(‘alex‘, 78 ) 时,self 等于 obj2

所以,内容其实被封装到了对象 obj1 和 obj2 中,每个对象中都有 name 和 age 属性,在内存里类似于下图来保存。

技术分享

第二步:从某处调用被封装的内容

调用被封装的内容时,有两种情况:

  • 通过对象直接调用
  • 通过self间接调用

1、通过对象直接调用被封装的内容

上图展示了对象 obj1 和 obj2 在内存中保存的方式,根据保存格式可以如此调用被封装的内容:对象.属性名

class Foo:
 
    def __init__(self, name, age):
        self.name = name
        self.age = age
 
obj1 = Foo(‘wupeiqi‘, 18)
print obj1.name    # 直接调用obj1对象的name属性
print obj1.age     # 直接调用obj1对象的age属性
 
obj2 = Foo(‘alex‘, 73)
print obj2.name    # 直接调用obj2对象的name属性
print obj2.age     # 直接调用obj2对象的age属性

 

2、通过self间接调用被封装的内容

执行类中的方法时,需要通过self间接调用被封装的内容

class Foo:
  
    def __init__(self, name, age):
        self.name = name
        self.age = age
  
    def detail(self):
        print self.name
        print self.age
  
obj1 = Foo(‘wupeiqi‘, 18)
obj1.detail()  # Python默认会将obj1传给self参数,即:obj1.detail(obj1),所以,此时方法内部的 self = obj1,即:self.name 是 wupeiqi ;self.age 是 18
  
obj2 = Foo(‘alex‘, 73)
obj2.detail()  # Python默认会将obj2传给self参数,即:obj1.detail(obj2),所以,此时方法内部的 self = obj2,即:self.name 是 alex ; self.age 是 78

 综上所述,对于面向对象的封装来说,其实就是使用构造方法将内容封装到 对象 中,然后通过对象直接或者self间接获取被封装的内容。

 

类定义

面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。

语法格式如下:

class ClassName:
    <statement-1>
    .
    .
    .
    <statement-N>

 

类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性。

以Student类为例,在Python中,定义类是通过class关键字:

class Student(object):
    pass

 

class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object类,这是所有类最终都会继承的类。

定义好了Student类,就可以根据Student类创建出Student的实例,创建实例是通过类名+()实现的:

>>> bart = Student()
>>> bart
<__main__.Student object at 0x10a67a590>
>>> Student
<class ‘__main__.Student‘>

 

可以看到,变量bart指向的就是一个Student的实例,后面的0x10a67a590是内存地址,每个object的地址都不一样,而Student本身则是一个类。

可以自由地给一个实例变量绑定属性,比如,给实例bart绑定一个name属性:

>>> bart.name = ‘Bart Simpson‘
>>> bart.name
‘Bart Simpson‘

 由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__方法,在创建实例的时候,就把namescore等属性绑上去:

class Student(object):

    def __init__(self, name, score):
        self.name = name
        self.score = score

 

注意到__init__方法的第一个参数永远是self,表示创建的实例本身,因此,在__init__方法内部,就可以把各种属性绑定到self,因为self就指向创建的实例本身。

有了__init__方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__方法匹配的参数,但self不需要传,Python解释器自己会把实例变量传进去:

>>> bart = Student(‘Bart Simpson‘, 59)
>>> bart.name
‘Bart Simpson‘
>>> bart.score
59

 和普通的函数相比,在类中定义的函数只有一点不同,就是第一个参数永远是实例变量self,并且,调用时,不用传递该参数。除此之外,类的方法和普通函数没有什么区别,所以,你仍然可以用默认参数、可变参数、关键字参数和命名关键字参数。

数据封装

面向对象编程的一个重要特点就是数据封装。在上面的Student类中,每个实例就拥有各自的namescore这些数据。我们可以通过函数来访问这些数据,比如打印一个学生的成绩:

>>> def print_score(std):
...     print(‘%s: %s‘ % (std.name, std.score))
...
>>> print_score(bart)
Bart Simpson: 59

 但是,既然Student实例本身就拥有这些数据,要访问这些数据,就没有必要从外面的函数去访问,可以直接在Student类的内部定义访问数据的函数,这样,就把“数据”给封装起来了。这些封装数据的函数是和Student类本身是关联起来的,我们称之为类的方法:

class Student(object):

    def __init__(self, name, score):
        self.name = name
        self.score = score

    def print_score(self):
        print(‘%s: %s‘ % (self.name, self.score))

 要定义一个方法,除了第一个参数是self外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self不用传递,其他参数正常传入:

>>> bart.print_score()
Bart Simpson: 59

 

这样一来,我们从外部看Student类,就只需要知道,创建实例需要给出namescore,而如何打印,都是在Student类的内部定义的,这些数据和逻辑被“封装”起来了,调用很容易,但却不用知道内部实现的细节。

封装的另一个好处是可以给Student类增加新的方法,比如get_grade

class Student(object):
    ...

    def get_grade(self):
        if self.score >= 90:
            return ‘A‘
        elif self.score >= 60:
            return ‘B‘
        else:
            return ‘C‘

 同样的,get_grade方法可以直接在实例变量上调用,不需要知道内部实现细节:

>>> bart.get_grade()
‘C‘

 

小结

类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;

方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;

通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。

和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同。

 

访问限制

在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。

但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的namescore属性:

>>> bart = Student(‘Bart Simpson‘, 98)
>>> bart.score
98
>>> bart.score = 59
>>> bart.score
59

 如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

class Student(object):

    def __init__(self, name, score):
        self.__name = name
        self.__score = score

    def print_score(self):
        print(‘%s: %s‘ % (self.__name, self.__score))

 改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name实例变量.__score了:

>>> bart = Student(‘Bart Simpson‘, 98)
>>> bart.__name
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: ‘Student‘ object has no attribute ‘__name‘

 

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。

但是如果外部代码要获取name和score怎么办?可以给Student类增加get_nameget_score这样的方法:

class Student(object):
    ...

    def get_name(self):
        return self.__name

    def get_score(self):
        return self.__score

 如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score方法:

class Student(object):
    ...

    def set_score(self, score):
        self.__score = score

 你也许会问,原先那种直接通过bart.score = 59也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:

class Student(object):
    ...

    def set_score(self, score):
        if 0 <= score <= 100:
            self.__score = score
        else:
            raise ValueError(‘bad score‘)

 

需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:

>>> bart._Student__name
‘Bart Simpson‘

 

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

最后注意下面的这种错误写法:

>>> bart = Student(‘Bart Simpson‘, 98)
>>> bart.get_name()
‘Bart Simpson‘
>>> bart.__name = ‘New Name‘ # 设置__name变量!
>>> bart.__name
‘New Name‘

 表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

>>> bart.get_name() # get_name()内部返回self.__name
‘Bart Simpson‘

 

类对象

类对象支持两种操作:属性引用和实例化。

属性引用使用和 Python 中所有的属性引用一样的标准语法:obj.name

类对象创建后,类命名空间中所有的命名都是有效属性名。所以如果类定义是这样:

#!/usr/bin/python3

class MyClass:
    """一个简单的类实例"""
    i = 12345
    def f(self):
        return ‘hello world‘

# 实例化类
x = MyClass()

# 访问类的属性和方法
print("MyClass 类的属性 i 为:", x.i)
print("MyClass 类的方法 f 输出为:", x.f())

 实例化类:

# 实例化类
x = MyClass()
# 访问类的属性和方法

 

以上创建了一个新的类实例并将该对象赋给局部变量 x,x 为空的对象。

执行以上程序输出结果为:

MyClass 类的属性 i 为: 12345
MyClass 类的方法 f 输出为: hello world

 很多类都倾向于将对象创建为有初始状态的。因此类可能会定义一个名为 __init__() 的特殊方法(构造方法),像下面这样:

def __init__(self):
    self.data = []

 类定义了 __init__() 方法的话,类的实例化操作会自动调用 __init__() 方法。所以在下例中,可以这样创建一个新的实例:

x = MyClass()

 当然, __init__() 方法可以有参数,参数通过 __init__() 传递到类的实例化操作上。例如:

>>> class Complex:
...     def __init__(self, realpart, imagpart):
...         self.r = realpart
...         self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

 

类的方法

在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数:

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ‘‘
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

# 实例化类
p = people(‘tom‘,10,30)
p.speak()

 执行以上程序输出结果为:

tom 说: 我 10 岁。

 

继承和多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

继承,面向对象中的继承和现实生活中的继承相同,即:子可以继承父的内容。

例如:

  猫可以:喵喵叫、吃、喝、拉、撒

  狗可以:汪汪叫、吃、喝、拉、撒

如果我们要分别为猫和狗创建一个类,那么就需要为 猫 和 狗 实现他们所有的功能,如下所示:

伪代码:

class 猫:

    def 喵喵叫(self):
        print ‘喵喵叫‘

    def 吃(self):
        # do something

    def 喝(self):
        # do something

    def 拉(self):
        # do something

    def 撒(self):
        # do something

class 狗:

    def 汪汪叫(self):
        print ‘喵喵叫‘

    def 吃(self):
        # do something

    def 喝(self):
        # do something

    def 拉(self):
        # do something

    def 撒(self):
        # do something

伪代码

 

上述代码不难看出,吃、喝、拉、撒是猫和狗都具有的功能,而我们却分别的猫和狗的类中编写了两次。如果使用 继承 的思想,如下实现:

  动物:吃、喝、拉、撒

     猫:喵喵叫(猫继承动物的功能)

     狗:汪汪叫(狗继承动物的功能)

伪代码:

class 动物:

    def 吃(self):
        # do something

    def 喝(self):
        # do something

    def 拉(self):
        # do something

    def 撒(self):
        # do something

# 在类后面括号中写入另外一个类名,表示当前类继承另外一个类
class 猫(动物):

    def 喵喵叫(self):
        print ‘喵喵叫‘
        
# 在类后面括号中写入另外一个类名,表示当前类继承另外一个类
class 狗(动物):

    def 汪汪叫(self):
        print ‘喵喵叫‘

伪代码

 实例:

class Animal:

    def eat(self):
        print "%s 吃 " %self.name

    def drink(self):
        print "%s 喝 " %self.name

    def shit(self):
        print "%s 拉 " %self.name

    def pee(self):
        print "%s 撒 " %self.name


class Cat(Animal):

    def __init__(self, name):
        self.name = name
        self.breed = ‘猫‘

    def cry(self):
        print ‘喵喵叫‘

class Dog(Animal):
    
    def __init__(self, name):
        self.name = name
        self.breed = ‘狗‘
        
    def cry(self):
        print ‘汪汪叫‘
        

# ######### 执行 #########

c1 = Cat(‘小白家的小黑猫‘)
c1.eat()

c2 = Cat(‘小黑的小白猫‘)
c2.drink()

d1 = Dog(‘胖子家的小瘦狗‘)
d1.eat()

代码实例

 

所以,对于面向对象的继承来说,其实就是将多个类共有的方法提取到父类中,子类仅需继承父类而不必一一实现每个方法。

注:除了子类和父类的称谓,你可能看到过 派生类 和 基类 ,他们与子类和父类只是叫法不同而已。

技术分享

学习了继承的写法之后,我们用代码来是上述阿猫阿狗的功能:

class Animal:

    def eat(self):
        print "%s 吃 " %self.name

    def drink(self):
        print "%s 喝 " %self.name

    def shit(self):
        print "%s 拉 " %self.name

    def pee(self):
        print "%s 撒 " %self.name


class Cat(Animal):

    def __init__(self, name):
        self.name = name
        self.breed = ‘猫‘

    def cry(self):
        print ‘喵喵叫‘

class Dog(Animal):
    
    def __init__(self, name):
        self.name = name
        self.breed = ‘狗‘
        
    def cry(self):
        print ‘汪汪叫‘
        

# ######### 执行 #########

c1 = Cat(‘小白家的小黑猫‘)
c1.eat()

c2 = Cat(‘小黑的小白猫‘)
c2.drink()

d1 = Dog(‘胖子家的小瘦狗‘)
d1.eat()

代码实例

 

比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:

class Animal(object):
    def run(self):
        print(‘Animal is running...‘)

 当我们需要编写DogCat类时,就可以直接从Animal类继承:

class Dog(Animal):
    pass

class Cat(Animal):
    pass

 

对于Dog来说,Animal就是它的父类,对于Animal来说,Dog就是它的子类。CatDog类似。

继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,DogCat作为它的子类,什么事也没干,就自动拥有了run()方法:

dog = Dog()
dog.run()

cat = Cat()
cat.run()

 运行结果如下:

Animal is running... 
Animal is running...

 当然,也可以对子类增加一些方法,比如Dog类:

class Dog(Animal):

    def run(self):
        print(‘Dog is running...‘)

    def eat(self):
        print(‘Eating meat...‘)

 继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog还是Cat,它们run()的时候,显示的都是Animal is running...,符合逻辑的做法是分别显示Dog is running...Cat is running...,因此,对DogCat类改进如下:

class Dog(Animal):

    def run(self):
        print(‘Dog is running...‘)

class Cat(Animal):

    def run(self):
        print(‘Cat is running...‘)

 再次运行,结果如下:

Dog is running...
Cat is running...

 

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。

要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:

a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型

 判断一个变量是否是某个类型可以用isinstance()判断:

>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True

看来abc确实对应着listAnimalDog这3种类型。

但是等等,试试:

>>> isinstance(c, Animal)
True

 

>>> isinstance(c, Animal)
True

 

看来c不仅仅是Dogc还是Animal

不过仔细想想,这是有道理的,因为Dog是从Animal继承下来的,当我们创建了一个Dog的实例c时,我们认为c的数据类型是Dog没错,但c同时也是Animal也没错,Dog本来就是Animal的一种!

所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:

>>> b = Animal()
>>> isinstance(b, Dog)
False

 

Dog可以看成Animal,但Animal不可以看成Dog

要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal类型的变量:

def run_twice(animal):
    animal.run()
    animal.run()

 当我们传入Animal的实例时,run_twice()就打印出:

>>> run_twice(Animal())
Animal is running...
Animal is running...

 当我们传入Dog的实例时,run_twice()就打印出:

>>> run_twice(Dog())
Dog is running...
Dog is running...

 当我们传入Cat的实例时,run_twice()就打印出:

>>> run_twice(Cat())
Cat is running...
Cat is running...

 看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise类型,也从Animal派生:

class Tortoise(Animal):
    def run(self):
        print(‘Tortoise is running slowly...‘)

 当我们调用run_twice()时,传入Tortoise的实例:

>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...

 

你会发现,新增一个Animal的子类,不必对run_twice()做任何修改,实际上,任何依赖Animal作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。

多态的好处就是,当我们需要传入DogCatTortoise……时,我们只需要接收Animal类型就可以了,因为DogCatTortoise……都是Animal类型,然后,按照Animal类型进行操作即可。由于Animal类型有run()方法,因此,传入的任意类型,只要是Animal类或者子类,就会自动调用实际类型的run()方法,这就是多态的意思:

对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()方法,而具体调用的run()方法是作用在AnimalDogCat还是Tortoise对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:

对扩展开放:允许新增Animal子类;

对修改封闭:不需要修改依赖Animal类型的run_twice()等函数。

继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样的关系。而任何类,最终都可以追溯到根类object,这些继承关系看上去就像一颗倒着的树。比如如下的继承树:

技术分享

 

Python 同样支持类的继承,如果一种语言不支持继承,类就没有什么意义。派生类的定义如下所示:

class DerivedClassName(BaseClassName1):
    <statement-1>
    .
    .
    .
    <statement-N>

需要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类中是否包含方法。

BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:

class DerivedClassName(modname.BaseClassName):

实例

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ‘‘
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

#单继承示例
class student(people):
    grade = ‘‘
    def __init__(self,n,a,w,g):
        #调用父类的构函
        people.__init__(self,n,a,w)
        self.grade = g
    #覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade))



s = student(‘ken‘,10,60,3)
s.speak()

 执行以上程序输出结果为:

ken 说: 我 10 岁了,我在读 3 年级

多继承

那么问题又来了,多继承呢?

  • 是否可以继承多个类
  • 如果继承的多个类每个类中都定了相同的函数,那么那一个会被使用呢?

1、Python的类可以继承多个类,Java和C#中则只能继承一个类

2、Python的类如果继承了多个类,那么其寻找方法的方式有两种,分别是:深度优先广度优先

技术分享

  • 当类是经典类时,多继承情况下,会按照深度优先方式查找
  • 当类是新式类时,多继承情况下,会按照广度优先方式查找

经典类和新式类,从字面上可以看出一个老一个新,新的必然包含了跟多的功能,也是之后推荐的写法,从写法上区分的话,如果 当前类或者父类继承了object类,那么该类便是新式类,否则便是经典类。

技术分享 技术分享

经典类多继承:

class D:

    def bar(self):
        print ‘D.bar‘


class C(D):

    def bar(self):
        print ‘C.bar‘


class B(D):

    def bar(self):
        print ‘B.bar‘


class A(B, C):

    def bar(self):
        print ‘A.bar‘

a = A()
# 执行bar方法时
# 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错
# 所以,查找顺序:A --> B --> D --> C
# 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了
a.bar()

经典类多继承

 新式类多继承:

class D(object):

    def bar(self):
        print ‘D.bar‘


class C(D):

    def bar(self):
        print ‘C.bar‘


class B(D):

    def bar(self):
        print ‘B.bar‘


class A(B, C):

    def bar(self):
        print ‘A.bar‘

a = A()
# 执行bar方法时
# 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错
# 所以,查找顺序:A --> B --> C --> D
# 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了
a.bar()

新式类多继承

 

经典类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错

新式类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错

注意:在上述查找过程中,一旦找到,则寻找过程立即中断,便不会再继续找了

 

Python同样有限的支持多继承形式。多继承的类定义形如下例:

class DerivedClassName(Base1, Base2, Base3):
    <statement-1>
    .
    .
    .
    <statement-N>

 需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找父类中是否包含方法。

#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ‘‘
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

#单继承示例
class student(people):
    grade = ‘‘
    def __init__(self,n,a,w,g):
        #调用父类的构函
        people.__init__(self,n,a,w)
        self.grade = g
    #覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade))

#另一个类,多重继承之前的准备
class speaker():
    topic = ‘‘
    name = ‘‘
    def __init__(self,n,t):
        self.name = n
        self.topic = t
    def speak(self):
        print("我叫 %s,我是一个演说家,我演讲的主题是 %s"%(self.name,self.topic))

#多重继承
class sample(speaker,student):
    a =‘‘
    def __init__(self,n,a,w,g,t):
        student.__init__(self,n,a,w,g)
        speaker.__init__(self,n,t)

test = sample("Tim",25,80,4,"Python")
test.speak()   #方法名同,默认调用的是在括号中排前地父类的方法

 执行以上程序输出结果为:

我叫 Tim,我是一个演说家,我演讲的主题是 Python

 

总结

  • 面向对象是一种编程方式,此编程方式的实现是基于对  和 对象 的使用
  • 类 是一个模板,模板中包装了多个“函数”供使用
  • 对象,根据模板创建的实例(即:对象),实例用于调用被包装在类中的函数
  • 面向对象三大特性:封装、继承和多态

 

静态语言 vs 动态语言

对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。

对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了:

class Timer(object):
    def run(self):
        print(‘Start...‘)

 

这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。

Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()方法,返回其内容。但是,许多对象,只要有read()方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()方法的对象。

小结

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。

动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。

方法重写

如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法,实例如下:

#!/usr/bin/python3

class Parent:        # 定义父类
   def myMethod(self):
      print (‘调用父类方法‘)

class Child(Parent): # 定义子类
   def myMethod(self):
      print (‘调用子类方法‘)

c = Child()          # 子类实例
c.myMethod()         # 子类调用重写方法

 执行以上程序输出结果为:

调用子类方法

 

类属性与方法

类的私有属性

__private_attrs:两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs

类的方法

在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数

类的私有方法

__private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 slef.__private_methods

实例

类的私有属性实例如下:

#!/usr/bin/python3

class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0    # 公开变量

    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print (self.__secretCount)

counter = JustCounter()
counter.count()
counter.count()
print (counter.publicCount)
print (counter.__secretCount)  # 报错,实例不能访问私有变量

 执行以上程序输出结果为:

1
2
2
Traceback (most recent call last):
  File "test.py", line 16, in <module>
    print (counter.__secretCount)  # 报错,实例不能访问私有变量
AttributeError: ‘JustCounter‘ object has no attribute ‘__secretCount‘

 类的私有方法实例如下:

#!/usr/bin/python3

class Site:
	def __init__(self, name, url):
		self.name = name       # public
		self.__url = url   # private

	def who(self):
		print(‘name  : ‘, self.name)
		print(‘url : ‘, self.__url)

	def __foo(self):          # 私有方法 
		print(‘这是私有方法‘)

	def foo(self):            # 公共方法
		print(‘这是公共方法‘)
		self.__foo()

x = Site(‘python‘, ‘www.python.com‘)
x.who()        # 正常输出
x.foo()        # 正常输出
x.__foo()      # 报错      #报错,外部不能调用私有方法

 

类的专有方法:

  • __init__ : 构造函数,在生成对象时调用
  • __del__ : 析构函数,释放对象时使用
  • __repr__ : 打印,转换
  • __setitem__ : 按照索引赋值
  • __getitem__: 按照索引获取值
  • __len__: 获得长度
  • __cmp__: 比较运算
  • __call__: 函数调用
  • __add__: 加运算
  • __sub__: 减运算
  • __mul__: 乘运算
  • __div__: 除运算
  • __mod__: 求余运算
  • __pow__: 称方

运算符重载

Python同样支持运算符重载,我么可以对类的专有方法进行重载,实例如下:

#!/usr/bin/python3

class Vector:
   def __init__(self, a, b):
      self.a = a
      self.b = b

   def __str__(self):
      return ‘Vector (%d, %d)‘ % (self.a, self.b)
   
   def __add__(self,other):
      return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)
v2 = Vector(5,-2)
print (v1 + v2)

 以上代码执行结果如下所示:

Vector(7,8)

获取对象信息

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?

使用type()

首先,我们来判断对象类型,使用type()函数:

基本类型都可以用type()判断:

>>> type(123)
<class ‘int‘>
>>> type(‘str‘)
<class ‘str‘>
>>> type(None)
<type(None) ‘NoneType‘>

如果一个变量指向函数或者类,也可以用type()判断:

>>> type(abs)
<class ‘builtin_function_or_method‘>
>>> type(a)
<class ‘__main__.Animal‘>

但是type()函数返回的是什么类型呢?它返回对应的Class类型。如果我们要在if语句中判断,就需要比较两个变量的type类型是否相同:

>>> type(123)==type(456)
True
>>> type(123)==int
True
>>> type(‘abc‘)==type(‘123‘)
True
>>> type(‘abc‘)==str
True
>>> type(‘abc‘)==type(123)
False

判断基本数据类型可以直接写intstr等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:

>>> import types
>>> def fn():
...     pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。

我们回顾上次的例子,如果继承关系是:

object -> Animal -> Dog -> Husky

 

那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:

>>> a = Animal()
>>> d = Dog()
>>> h = Husky()

 

然后,判断:

>>> isinstance(h, Husky)
True

 

没有问题,因为h变量指向的就是Husky对象。

再判断:

>>> isinstance(h, Dog)
True

 

h虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。

因此,我们可以确信,h还是Animal类型:

>>> isinstance(h, Animal)
True

 

同理,实际类型是Dog的d也是Animal类型:

>>> isinstance(d, Dog) and isinstance(d, Animal)
True

 

但是,d不是Husky类型:

>>> isinstance(d, Husky)
False

 

能用type()判断的基本类型也可以用isinstance()判断:

>>> isinstance(‘a‘, str)
True
>>> isinstance(123, int)
True
>>> isinstance(b‘a‘, bytes)
True

 

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:

>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True

 

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:

>>> dir(‘ABC‘)
[‘__add__‘, ‘__class__‘, ‘__contains__‘, ‘__delattr__‘, ‘__dir__‘, ‘__doc__‘, ‘__eq__‘, ‘__format__‘, ‘__ge__‘, ‘__getattribute__‘, ‘__getitem__‘, 
‘__getnewargs__‘, ‘__gt__‘, ‘__hash__‘, ‘__init__‘, ‘__iter__‘, ‘__le__‘, ‘__len__‘, ‘__lt__‘, ‘__mod__‘, ‘__mul__‘, ‘__ne__‘, ‘__new__‘, ‘__reduce__‘,
‘__reduce_ex__‘, ‘__repr__‘, ‘__rmod__‘, ‘__rmul__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘, ‘capitalize‘, ‘casefold‘, ‘center‘,
‘count‘, ‘encode‘, ‘endswith‘, ‘expandtabs‘, ‘find‘, ‘format‘, ‘format_map‘, ‘index‘, ‘isalnum‘, ‘isalpha‘, ‘isdecimal‘, ‘isdigit‘, ‘isidentifier‘,
‘islower‘, ‘isnumeric‘, ‘isprintable‘, ‘isspace‘, ‘istitle‘, ‘isupper‘, ‘join‘, ‘ljust‘, ‘lower‘, ‘lstrip‘, ‘maketrans‘, ‘partition‘, ‘replace‘, ‘rfind‘,
‘rindex‘, ‘rjust‘, ‘rpartition‘, ‘rsplit‘, ‘rstrip‘, ‘split‘, ‘splitlines‘, ‘startswith‘, ‘strip‘, ‘swapcase‘, ‘title‘, ‘translate‘, ‘upper‘, ‘zfill‘]

 

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

>>> len(‘ABC‘)
3
>>> ‘ABC‘.__len__()
3

 

我们自己写的类,如果也想用len(myObj)的话,就自己写一个__len__()方法:

>>> class MyDog(object):
...     def __len__(self):
...         return 100
...
>>> dog = MyDog()
>>> len(dog)
100

 

剩下的都是普通属性或方法,比如lower()返回小写的字符串:

>>> ‘ABC‘.lower()
‘abc‘

 

仅仅把属性和方法列出来是不够的,配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态:

>>> class MyObject(object):
...     def __init__(self):
...         self.x = 9
...     def power(self):
...         return self.x * self.x
...
>>> obj = MyObject()

 

紧接着,可以测试该对象的属性:

>>> hasattr(obj, ‘x‘) # 有属性‘x‘吗?
True
>>> obj.x
9
>>> hasattr(obj, ‘y‘) # 有属性‘y‘吗?
False
>>> setattr(obj, ‘y‘, 19) # 设置一个属性‘y‘
>>> hasattr(obj, ‘y‘) # 有属性‘y‘吗?
True
>>> getattr(obj, ‘y‘) # 获取属性‘y‘
19
>>> obj.y # 获取属性‘y‘
19

 

如果试图获取不存在的属性,会抛出AttributeError的错误:

>>> getattr(obj, ‘z‘) # 获取属性‘z‘
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: ‘MyObject‘ object has no attribute ‘z‘

 

可以传入一个default参数,如果属性不存在,就返回默认值:

>>> getattr(obj, ‘z‘, 404) # 获取属性‘z‘,如果不存在,返回默认值404
404

 

也可以获得对象的方法:

>>> hasattr(obj, ‘power‘) # 有属性‘power‘吗?
True
>>> getattr(obj, ‘power‘) # 获取属性‘power‘
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, ‘power‘) # 获取属性‘power‘并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

 

小结

通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:

sum = obj.x + obj.y

 

就不要写:

sum = getattr(obj, ‘x‘) + getattr(obj, ‘y‘)

 

一个正确的用法的例子如下:

def readImage(fp):
    if hasattr(fp, ‘read‘):
        return readData(fp)
    return None

 

假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()就派上了用场。

请注意,在Python这类动态语言中,根据鸭子类型,有read()方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()方法返回的是有效的图像数据,就不影响读取图像的功能。

 

实例属性和类属性

由于Python是动态语言,根据类创建的实例可以任意绑定属性。

给实例绑定属性的方法是通过实例变量,或者通过self变量:

class Student(object):
    def __init__(self, name):
        self.name = name

s = Student(‘Bob‘)
s.score = 90

 

但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:

class Student(object):
    name = ‘Student‘

 

当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:

>>> class Student(object):
...     name = ‘Student‘
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = ‘Michael‘ # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student

从上面的例子可以看出,在编写程序的时候,千万不要把实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。

 

 

 

 

 

 

 









以上是关于python基础之面对对象的主要内容,如果未能解决你的问题,请参考以下文章

学习Python基础--------6面对对象进阶

《Python学习之路 -- Python基础之切片》

面对对象之特殊变量__slot__ | Python

Python基础 - 面向对象

面对对象之继承 | Python

Python语法基础_08.面对对象-2