【NLP中文分词】一、规则分词之最大匹配法
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了【NLP中文分词】一、规则分词之最大匹配法相关的知识,希望对你有一定的参考价值。
参考技术A 算法:逆向最大匹配法与正向最大匹配法的区别在于步骤3:若这m个字符不属于词典里面的词,则去除这m个字符的第一个字符
同时运用正向最大匹配法和逆向最大匹配法,比较两者结果,取分词数少的结果作为最终结果
自然语言处理之HMM模型分词
汉语中句子以字为单位的,但语义理解仍是以词为单位,所以也就存在中文分词问题。主要的技术可以分为:规则分词、统计分词以及混合分词(规则+统计)。
基于规则的分词是一种机械分词,主要依赖于维护词典,在切分时将与剧中的字符串与词典中的词进行匹配。主要包括正向最大匹配法、逆向最大匹配法以及双向最大匹配法。
统计分词主要思想是将每个词视作由字组成,如果相连的字在不同文本中出现次数越多,就越可能是一个词。(隐马尔可夫【HMM】、条件随机场【CRF】等)
l 长度为m的字符串确定其概率分布:
P(x1,x2……,xm)=P(x1)P(x1|x1,x2)……P(xm|x1,x2,……,xm-1)
l 用n-gram模型将上式进行简化,认为其概率仅与其前n-1个词相关:
P~=P(xi|xi-(n-1),xi-(n-2)……,xi-1)=count(xi-(n-1),xi-(n-2)……,xi-1,xi)/count(xi-(n-1),xi-(n-2)……,xi-1)
隐马尔可夫模型HMM将分词作为字在字串中的序列标注任务来实现。每个字在构造一个特定词语时都占据一个确定的构词结构:B(词首)、M(词中)、E(词尾)和S(单独成词)。
l 抽象表示:
W表示输入的句子,长度n,O表示输出标签,则理想是maxP(o1,o2…|w1,w2……)
贝叶斯公式P(o|w)=P(w|o)P(o)/P(w) 因为P(w)是给定输出为常数,因此要最大化P(w|o)P(o)
P(w|o)= P(w1|o1) P(w2|o3) ……P(w3|o3) 作马尔可夫假设每个输出仅与上一个输出有关
P(o)=P(o1)P(o2|o1)……P(on|o(n-1))
再通过Veterbi算法求最优路径(如果最终的最优路径经过某个oi那么从初始结点到oi-1必然也是最优路径)。
代码实现如下(训练语料库没有给出):
1 class HMM(object): 2 def __init__(self): 3 import os 4 5 # 主要是用于存取算法中间结果,不用每次都训练模型 6 self.model_file = ‘hmm_model.pkl‘ 7 8 # 状态值集合 9 self.state_list = [‘B‘, ‘M‘, ‘E‘, ‘S‘] 10 # 参数加载,用于判断是否需要重新加载model_file 11 self.load_para = False 12 13 # 用于加载已计算的中间结果,当需要重新训练时,需初始化清空结果 14 def try_load_model(self, trained): 15 if trained: 16 import pickle 17 with open(self.model_file, ‘rb‘) as f: 18 self.A_dic = pickle.load(f) 19 self.B_dic = pickle.load(f) 20 self.Pi_dic = pickle.load(f) 21 self.load_para = True 22 23 else: 24 # 状态转移概率(状态->状态的条件概率) 25 self.A_dic = {} 26 # 发射概率(状态->词语的条件概率) 27 self.B_dic = {} 28 # 状态的初始概率 29 self.Pi_dic = {} 30 self.load_para = False 31 32 # 计算转移概率、发射概率以及初始概率 33 def train(self, path): 34 35 # 重置几个概率矩阵 36 self.try_load_model(False) 37 38 # 统计状态出现次数,求p(o) 39 Count_dic = {} 40 41 # 初始化参数 42 def init_parameters(): 43 for state in self.state_list: 44 self.A_dic[state] = {s: 0.0 for s in self.state_list} 45 self.Pi_dic[state] = 0.0 46 self.B_dic[state] = {} 47 48 Count_dic[state] = 0 49 50 def makeLabel(text): 51 out_text = [] 52 if len(text) == 1: 53 out_text.append(‘S‘) 54 else: 55 out_text += [‘B‘] + [‘M‘] * (len(text) - 2) + [‘E‘] 56 57 return out_text 58 59 init_parameters() 60 line_num = -1 61 # 观察者集合,主要是字以及标点等 62 words = set() 63 with open(path, encoding=‘utf8‘) as f: 64 for line in f: 65 line_num += 1 66 67 line = line.strip() 68 if not line: 69 continue 70 71 word_list = [i for i in line if i != ‘ ‘] 72 words |= set(word_list) # 更新字的集合 73 74 linelist = line.split() 75 76 line_state = [] 77 for w in linelist: 78 line_state.extend(makeLabel(w)) 79 80 assert len(word_list) == len(line_state) 81 82 for k, v in enumerate(line_state): 83 Count_dic[v] += 1 84 if k == 0: 85 self.Pi_dic[v] += 1 # 每个句子的第一个字的状态,用于计算初始状态概率 86 else: 87 self.A_dic[line_state[k - 1]][v] += 1 # 计算转移概率 88 self.B_dic[line_state[k]][word_list[k]] = 89 self.B_dic[line_state[k]].get(word_list[k], 0) + 1.0 # 计算发射概率 90 91 self.Pi_dic = {k: v * 1.0 / line_num for k, v in self.Pi_dic.items()} 92 self.A_dic = {k: {k1: v1 / Count_dic[k] for k1, v1 in v.items()} 93 for k, v in self.A_dic.items()} 94 #加1平滑 95 self.B_dic = {k: {k1: (v1 + 1) / Count_dic[k] for k1, v1 in v.items()} 96 for k, v in self.B_dic.items()} 97 #序列化 98 import pickle 99 with open(self.model_file, ‘wb‘) as f: 100 pickle.dump(self.A_dic, f) 101 pickle.dump(self.B_dic, f) 102 pickle.dump(self.Pi_dic, f) 103 104 return self 105 106 def viterbi(self, text, states, start_p, trans_p, emit_p): 107 V = [{}] 108 path = {} 109 for y in states: 110 V[0][y] = start_p[y] * emit_p[y].get(text[0], 0) 111 path[y] = [y] 112 for t in range(1, len(text)): 113 V.append({}) 114 newpath = {} 115 116 #检验训练的发射概率矩阵中是否有该字 117 neverSeen = text[t] not in emit_p[‘S‘].keys() and 118 text[t] not in emit_p[‘M‘].keys() and 119 text[t] not in emit_p[‘E‘].keys() and 120 text[t] not in emit_p[‘B‘].keys() 121 for y in states: 122 emitP = emit_p[y].get(text[t], 0) if not neverSeen else 1.0 #设置未知字单独成词 123 (prob, state) = max( 124 [(V[t - 1][y0] * trans_p[y0].get(y, 0) * 125 emitP, y0) 126 for y0 in states if V[t - 1][y0] > 0]) 127 V[t][y] = prob 128 newpath[y] = path[state] + [y] 129 path = newpath 130 131 if emit_p[‘M‘].get(text[-1], 0)> emit_p[‘S‘].get(text[-1], 0): 132 (prob, state) = max([(V[len(text) - 1][y], y) for y in (‘E‘,‘M‘)]) 133 else: 134 (prob, state) = max([(V[len(text) - 1][y], y) for y in states]) 135 136 return (prob, path[state]) 137 138 def cut(self, text): 139 import os 140 if not self.load_para: 141 self.try_load_model(os.path.exists(self.model_file)) 142 prob, pos_list = self.viterbi(text, self.state_list, self.Pi_dic, self.A_dic, self.B_dic) 143 begin, next = 0, 0 144 for i, char in enumerate(text): 145 pos = pos_list[i] 146 if pos == ‘B‘: 147 begin = i 148 elif pos == ‘E‘: 149 yield text[begin: i+1] 150 next = i+1 151 elif pos == ‘S‘: 152 yield char 153 next = i+1 154 if next < len(text): 155 yield text[next:] 156 #####测试 157 hmm=HMM() 158 hmm.train(‘cutwords\trainCorpus.txt_utf8.txt‘) 159 160 text=‘这是一个很棒的方案!‘ 161 res=hmm.cut(text) 162 print(text) 163 print(str(list(res)))
以上是关于【NLP中文分词】一、规则分词之最大匹配法的主要内容,如果未能解决你的问题,请参考以下文章