python 绘出分类效果的图步骤

Posted 湘雨jay

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 绘出分类效果的图步骤相关的知识,希望对你有一定的参考价值。

先亮结果图:(忽略中文显示功能,请查看以前文章进行修改)

cm_light = mpl.colors.ListedColormap([\'g\', \'r\', \'b\'])

 

 

目的:

生成分类器模型的界面图(展示模型的分类界面)

记住:平面也是由许多点组成的网格点组成的

(1)选出两个维度,x1,x2;选择出其最大最小值(适当的扩大样本已有的数据的范围,使用了extend(自定义的函数))

  def extend(a, b):
    return 1.05*a-0.05*b, 1.05*b-0.05*a

  x1_min, x1_max = extend(x[:, 0].min(), x[:, 0].max()) # x1的范围
  x2_min, x2_max = extend(x[:, 1].min(), x[:, 1].max()) # x2的范围

(2)形成网格区域(用于画图) 

  N=500;M=500

  t1 = np.linspace(x1_min, x1_max, N)  t2 = np.linspace(x2_min, x2_max, M) 

  x1, x2 = np.meshgrid(t1, t2)

(3)形成预测值

  x_show = np.stack((x1.flat, x2.flat), axis=1)  

  y_hat = model.predict(x_show) # 预测

  y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同

(4)绘制分类器的分类界面
  plt.figure(facecolor=\'w\')
  plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示

(5)展示分类器的分类效果(将样本点加入)

  plt.scatter(x[:, 0], x[:, 1], s=30, c=y, edgecolors=\'k\', cmap=cm_light)  # 样本的显示

 

总结:

先画分类器的分类界面,借助np.meshgrid()形成网格数据,然后借助plt.pcolormesh()进行画图

再讲样本数据散点图加上

疑惑,plt.pcolormesh()输入参数的类型要求疑惑

由于未二维的平面,所以只选择两个特征便可以

 

以上是关于python 绘出分类效果的图步骤的主要内容,如果未能解决你的问题,请参考以下文章

python可视化-pandas一行代码能绘出哪些炫酷图

基于K近邻的分类算法实践(Python3)

python birch的聚类结果怎么输出 看某一个具体是啥分类

R语言 set.seed()方法

6步骤带你了解朴素贝叶斯分类器(含Python和R语言代码)

30 行代码绘出你的微信朋友统计图