n的阶乘公式
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了n的阶乘公式相关的知识,希望对你有一定的参考价值。
n的阶乘公式
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
扩展资料
双阶乘用“m!!”表示。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
任何大于等于1 的自然数n 阶乘表示方法:
资料来源:阶乘_百度百科
参考技术An!=1×2×3×...×n或者0!=1,n!=(n-1)!×n
例如,求1x2x3x4...xn的值,此时可以用阶乘的方式表示:
n!=1×2×3×...×(n-1)n或者n!=(n-1)!×n
扩展资料
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的
阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。阶乘常用于计算机领域。
大于等于1
任何大于等于1 的自然数n 阶乘表示方法:
n!=1×2×3×...×(n-1)n或n!=(n-1)!×n0的阶乘
其中0!=1
参考技术B参考资料:百度百科-阶乘
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
扩展资料
严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:
正数 n=m+x,m为其正数部,x为其小数部
负数n=-m-x,-m为其正数部,-x为其小数部
参考资料:百度百科阶乘词条
1、当n=0时,n!=0!=1
2、当n为大于0的正整数时,n!=1×2×3×…×n
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积。自然数n的阶乘写作n!。该概念于1808年由数学家基斯顿·卡曼引进。
通常我们所说的阶乘是定义在自然数范围里的(大多科学计算器只能计算 0~69 的阶乘),小数科学计算器没有阶乘功能,如 0.5!,0.65!,0.777!都是错误的
扩展资料
0的阶乘
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。
给“0!”下定义只是为了相关公式的表述及运算更方便。 它只是一种定义出来的特殊的“形式”上的阶乘记号,无法用演绎方法来论证。“为什么0!=1”这个问题是伪问题。
参考技术D n!=n*(n-1)*(n-2)*(n-3)……*3*2*1例如:4!=4*3*2*1=24
0!=1
杭电1018阶乘位数
斯特灵公式是一条用来取n阶乘近似值的数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用,而且,即使在n很小的时候,斯特灵公式的取值已经十分准确:
用Stirling公式计算n!结果的位数时,可以两边取对数,得: log10(n!) = log10(2*PI*n)/2+n*log10(n/E);
故n!的位数为 log10(2*PI*n)/2+n*log10(n/E)+1(注意:当n=1时,算得的结果为0)
代码:floor(log10(sqrt(2*PI*N))+N*log10(N/e))+1;
#include <iostream> #include <algorithm> #include <cstdio> #include <cmath> #include <cstring> #include <queue> #include <stack> #include <map> #include <vector> #define PI acos((double)-1) #define E exp(double(1)) using namespace std; int main (void) { int n,ans,t; cin>>t; while(t--) { scanf("%d",&n); ans = floor(log10(sqrt(2*PI*n))+n*log10(n/E)) + 1; cout<<ans<<endl; } return 0; }
以上是关于n的阶乘公式的主要内容,如果未能解决你的问题,请参考以下文章