Python调用OpenCV实现摄像头的运动检测
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python调用OpenCV实现摄像头的运动检测相关的知识,希望对你有一定的参考价值。
[硬件环境]
Win10 64位
[软件环境]
Python版本:2.7.3
IDE:JetBrains PyCharm 2016.3.2
Python库:
1.1) opencv-python(3.2.0.6)
[搭建过程]
OpenCV Python库:
1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装
[相关代码]
# encoding=utf-8 # 导入必要的软件包 import argparse import datetime import imutils import time import cv2 # 创建参数解析器并解析参数 ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the video file") ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") args = vars(ap.parse_args()) # 如果video参数为None,那么我们从摄像头读取数据 if args.get("video", None) is None: camera = cv2.VideoCapture(0) time.sleep(0.25) # 否则我们读取一个视频文件 else: camera = cv2.VideoCapture(args["video"]) # 初始化视频流的第一帧 firstFrame = None # 遍历视频的每一帧 while True: # 获取当前帧并初始化occupied/unoccupied文本 (grabbed, frame) = camera.read() text = "Unoccupied" # 如果不能抓取到一帧,说明我们到了视频的结尾 if not grabbed: break # 调整该帧的大小,转换为灰阶图像并且对其进行高斯模糊 frame = imutils.resize(frame, width=500) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) # 如果第一帧是None,对其进行初始化 if firstFrame is None: firstFrame = gray continue # 计算当前帧和第一帧的不同 frameDelta = cv2.absdiff(firstFrame, gray) thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] # 扩展阀值图像填充孔洞,然后找到阀值图像上的轮廓 thresh = cv2.dilate(thresh, None, iterations=2) thresh, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # cv2.findContours()函数返回三个值,第一个返回了你所处理的图像,第二个是轮廓本身,第三个是每条轮廓对应的属性 # 遍历轮廓 for c in contours: # if the contour is too small, ignore it print cv2.contourArea(c) if cv2.contourArea(c) < args["min_area"]: continue # compute the bounding box for the contour, draw it on the frame, # and update the text # 计算轮廓的边界框,在当前帧中画出该框 (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied" # draw the text and timestamp on the frame # 在当前帧上写文字以及时间戳 cv2.putText(frame, "Room Status: {}".format(text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"), (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) # 显示当前帧并记录用户是否按下按键 cv2.imshow("Security Feed", frame) cv2.imshow("Thresh", thresh) cv2.imshow("Frame Delta", frameDelta) key = cv2.waitKey(1) # 如果q键被按下,跳出循环 if key == ord("q"): break # 清理摄像机资源并关闭打开的窗口 camera.release() cv2.destroyAllWindows()
以上是关于Python调用OpenCV实现摄像头的运动检测的主要内容,如果未能解决你的问题,请参考以下文章
OpenCV+visual studio 2019 实现对avi视频或摄像头 laplace边缘检测。从AVI文件( bsd.avi)中得到视频流,对视频流进行Laplace边缘检测,并输出结果。(代
通过网络摄像头实时采集视频,采用OpenCV识别运动物体,实现有运动物体经过时存储,没有时则不存储.